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 Abstract 

Detecting small objects in aerial imagery remains a formidable challenge due 
to their limited pixel resolution, scale variability, complex backgrounds, and 
inconsistent illumination conditions. To address these issues, we propose a 
novel hybrid object detection framework that synergistically integrates the 
real-time processing strengths of the YOLO architecture with the advanced 
hierarchical feature extraction capabilities of the Swin Transformer. The 
proposed YOLO-Swin hybrid model incorporates three key architectural 
innovations: (1) a Cross-Scale Feature Fusion Module (CSFFM) that 
effectively combines multi-resolution features from both convolutional neural 
network (CNN) and transformer-based pathways to enhance scale 
robustness; (2) a Context-Aware Small Object Enhancement Module 
(CASOEM) designed to enrich semantic representation and improve the 
detectability of small-scale targets; and (3) an Adaptive Anchor Assignment 
Strategy (AAAS) tailored to the spatial and statistical characteristics of 
aerial imagery. Extensive experimental evaluations conducted on widely used 
benchmark datasets—including DOTA, VisDrone, and FAIR1M—
demonstrate that our model achieves state-of-the-art performance, 
outperforming baseline methods by achieving a 5.7% increase in mean 
Average Precision (mAP) for small object categories. Furthermore, the model 
maintains real-time inference capabilities, significantly reduces false 
negatives, and improves localization precision, particularly for objects 
smaller than 32×32 pixels. These results indicate the suitability of the 
proposed method for real-time aerial surveillance and remote sensing 
applications where precise small object detection is critical. 
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INTRODUCTION
The rapid advancement of unmanned aerial vehicles 
(UAVs) and satellite imaging technologies has greatly 
expanded the availability and applications of aerial 
imagery across diverse domains including urban 
planning, environmental monitoring, disaster 
management, and security surveillance (1,2, 3). 
Within these applications, object detection—
particularly the identification and localization of 
small objects—represents a critical and challenging 
task (4, 5). Unlike natural images captured at ground 
level, aerial imagery presents unique challenges: 
objects often occupy minimal pixel areas, appear in 
various orientations, exhibit extreme scale variations, 
and are frequently obscured by complex backgrounds 
(1, 6, 7). Object detection has evolved significantly 
from traditional computer vision methods to deep 
learning approaches (8). 
Convolutional Neural Network (CNN) based 
methods have dominated this field, with frameworks 
broadly categorized as two-stage detectors (e.g., R-
CNN family (9,10) and one-stage detectors (e.g., 
YOLO (11, 14, 15), SSD (12)). While two-stage 
detectors typically achieve higher accuracy, one-stage 
detectors offer superior inference speed—a critical 
factor for real-time applications (13). 
The YOLO framework has undergone significant 
evolution through its iterations (YOLOv1-v8), 
progressively improving detection accuracy while 
maintaining computational efficiency (11, 16, 17,18). 
However, despite these advancements, YOLO- based 
detectors continue to struggle with small object 
detection in aerial imagery due to limited receptive 
fields and insufficient feature representation for 
diminutive targets (19; 20). The objects in aerial 
imagery often occupy fewer than 32x32 pixels, 
making them particularly challenging to detect with 
conventional architectures (1; 21). Recent advances 
in vision transformers, notably the Swin Transformer 
(22), have shown promising results by effectively 
modeling long-range dependencies and hierarchical 
feature representations. The Swin Transformer 
introduces shifted windows that enable cross-window 
connections, offering an efficient approach to 
capture global context while maintaining linear 
computational complexity with image size (22, 23). 
This capability is particularly valuable for aerial 
imagery analysis, where contextual information plays 

a crucial role in distinguishing small objects from 
complex backgrounds (24, 25). 
Despite these advancements, there remains a 
significant gap in effectively combining the strengths 
of CNN-based detectors (e.g., YOLO) and 
transformer-based architectures for small object 
detection in aerial imagery (26, 27). Current hybrid 
approaches often struggle with feature alignment 
between different architectural paradigms, 
inadequate context modeling for small objects, and 
computational inefficiencies (28, 29, 30). This paper 
aims to bridge this gap by proposing a novel YOLO-
Swin hybrid architecture specifically designed for 
enhanced small object detection in aerial imagery. 
Our approach leverages the real-time inference 
capabilities of YOLO while incorporating the 
hierarchical feature representation strengths of Swin 
Transformer. The key contributions of this paper 
are:  
1) A novel YOLO-Swin hybrid architecture that 
integrates CNN-based and transformer-based feature 
extraction pathways through a cross-scale feature 
fusion module, enabling more effective 
representation of small objects in aerial imagery. 
2) A context-aware small object enhancement 
module that adaptively refines feature 
representations for diminutive targets by 
incorporating both local and global contextual 
information, significantly improving detection 
performance for objects under 32x32 pixels. 
3) An adaptive anchor assignment strategy 
specifically optimized for aerial imagery 
characteristics, which dynamically adjusts anchor 
configurations based on dataset statistics and scene 
complexity. 
4) Extensive experiments on multiple benchmark 
datasets (DOTA, VisDrone, FAIRIM) demonstrating 
state-of-the-art performance, with a 5.7% 
improvement in mean Average Precision (mAP) for 
small objects while maintaining real-time inference 
capability (;25 FPS on standard GPU hardware). 
 
A. CNN-based Object Detection 
CNN-based object detection frameworks can be 
broadly categorized into two-stage and one-stage 
detectors. Two-stage detectors, pioneered by R-CNN 
(9), first generate region proposals and then classify 
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these regions. Fast R-CNN (41) improved 
computational efficiency by sharing convolutional 
features across proposals, while Faster R-CNN (10) 
introduced the Region Proposal Network (RPN) to 
generate proposals directly from convolutional 
features. These methods achieved high accuracy but 
at the cost of inference speed (32; 33). To address 
speed limitations, one-stage detectors emerged, with 
YOLO (11) as a pioneering framework that directly 
predicts bounding boxes and class probabilities from 
the entire image in a single network pass. SSD (1/2) 
enhanced this approach by detecting objects at 
multiple scales using feature maps from different 
network layers. RetinaNet (34) introduced focal loss 
to address class imbalance between foreground and 
background examples, significantly improving 
detection accuracy. The YOLO framework has 
evolved substantially through multiple iterations. 
YOLOv2 (1/4) introduced anchor boxes and batch 
normalization, while YOLOv3 (15) incorporated 
multi-scale predictions using a feature pyramid 
network. YOLOv4 (16) integrated advanced training 
techniques like Mosaic data augmentation and 
modified CSPNet as the backbone, while YOLOv5 
(17) further refined these improvements with 
enhanced training strategies. Recent versions like 
YOLOv7 (18) have incorporated model scaling and 
compound scaling methods to optimize performance 
across different computational constraints. 
For aerial imagery specifically, several adaptations of 
CNN-based detectors have been proposed. Li et al. 
(35) introduced a density map-guided one-stage 
detector for crowded scenes in aerial images. Zhang 
et al. (19) modified YOLOv5 with a feature 
enhancement module specifically for small objects. 
Yang et al. (7) proposed R3Det for multi-oriented 
object detection in aerial images, while Ding et al. 
(37) introduced Rol Transformer for learning 
rotation-invariant features. Despite these 
advancements, CNN-based methods still struggle 
with small object detection in aerial imagery due to 
limited receptive fields and insufficient feature 
representations for diminutive objects (21). 
Additionally, the fixed geometric structures of 
convolution operations make it challenging to 
capture the diverse scales and orientations common 
in aerial imagery (5). 
 

B. Transformer-based Object Detection 
Transformers, originally designed for natural 
language processing (38), have recently been adapted 
for computer vision tasks. Vision Transformer (ViT) 
(39) demonstrated that a pure transformer 
architecture could achieve state-of-the-art 
performance on image classification by treating 
image patches as tokens. This success inspired 
numerous transformer-based object detection 
approaches. DETR (40) pioneered transformer-based 
object detection by reformulating the detection task 
as a direct set prediction problem, eliminating the 
need for hand-designed components like non-
maximum suppression. Deformable DETR (41) 
improved this approach by introducing deformable 
attention modules that focus on sparse spatial 
locations, reducing computational complexity and 
convergence time. Swin Transformer (22) addressed 
the quadratic computational complexity of self-
attention by computing it within local windows and 
introducing shifted window partitioning for cross-
window connections. This hierarchical architecture 
with varying feature resolutions made Swin 
Transformer particularly suitable for dense 
prediction tasks like object detection. PVT and ViT-
Det further adapted transformer architectures for 
detection tasks by incorporating pyramid structures 
similar to those used in CNN-based detectors. For 
aerial imagery specifically, Yang et al. proposed 
Oriented RepPoints Transformer for oriented object 
detection in aerial images. Zhang et al. (24) 
introduced Transformer-based Oriented Object 
Detection (TOOD) that leverages global context 
modeling for improved detection in remote sensing 
images. Chen et al. developed an Oriented Attention 
Detector Transformer for multi-oriented object 
detection in aerial images. 
While transformer-based methods excel at modeling 
long-range dependencies and capturing global 
context—advantageous for distinguishing small 
objects from complex backgrounds—they often 
require substantial computational resources and data 
for training (27). Additionally, the lack of inductive 
biases inherent in CNNs can hinder performance on 
object detection tasks with limited training data. 
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C. Hybrid Approaches and Small Object Detection 
Recognizing the complementary strengths of CNNs 
and transformers, researchers have developed hybrid 
approaches for object detection. Wang et al. (22) 
proposed Pyramid Vision Transformer (PVT) that 
combines pyramid feature hierarchies from CNNs 
with transformer modules. CBNet (5) introduced a 
composite backbone network that integrates multiple 
CNN backbones with transformer components for 
enhanced feature representation. For small object 
detection specifically, several specialized approaches 
have emerged. Li et al. (20) proposed a feature 
enhancement module that refines features at 
multiple scales. Wu et al. (21) introduced a scale-
balanced module to address scale variation in small 
objects. Yu et al. (31) developed a scale-aware 
network that adaptively selects appropriate feature 
maps for objects of different sizes. 
In the context of aerial imagery, Fu et al. (32) 
proposed a rotation-aware detector with feature 
enhancement for small objects in remote sensing 
images. Gao et al. (26) introduced a dynamic 
enhancement module specifically for small and dense 
objects in aerial images. Chen et al. (28) developed a 
hybrid CNN-transformer model for oriented object 
detection in aerial images, demonstrating improved 
performance for objects with various orientations. 
Most relevant to our work, several recent studies 
have explored combinations of YOLO and 
transformer architectures. Zhang et al. (29) proposed 
YOLOS, integrating transformer modules into the 
YOLO framework. Wang et al. (30) incorporated 
transformer attention modules into YOLOv7 for 
enhanced feature representation. However, these 
approaches were not specifically designed for the 
challenges of small object detection in aerial imagery. 
Despite these advancements, existing hybrid 
approaches face several limitations for aerial image 
analysis: (1) inadequate feature alignment between 
CNN and transformer branches, (2) insufficient 
context modeling for small objects, (3) 
computational inefficiencies during inference, and 
(4) lack of specificity for the unique characteristics of 
aerial imagery (4, 27, 30). Our work addresses these 
limitations by proposing a novel YOLO-Swin hybrid 

architecture specifically designed for small object 
detection in aerial imagery. Unlike previous 
approaches, our method introduces a dedicated 
cross-scale feature fusion module that effectively 
aligns and integrates features from both CNN and 
transformer pathways. Additionally, we propose a 
context-aware small object enhancement module and 
an adaptive anchor assignment strategy optimized for 
aerial imagery characteristics. 
 
METHODOLOGY 
This section presents our proposed YOLO-Swin 
hybrid model for enhanced small object detection in 
aerial imagery. We first formulate the problem, then 
detail the overall architecture, followed by the key 
components: feature extraction pathways, cross-scale 
feature fusion, small object enhancement module, 
adaptive anchor assignment, and loss function 
design. 
A. Problem Formulation 
Small object detection in aerial imagery can be 
formally defined as follows: Given an input aerial 
image I € RH×W×3, where H and W represent the 
height and width of the image, the objective is to 
detect a set of objects ϐ = {ο1, ο1….. οn} where each ϐ 
object 9; is represented by a tuple (bi, ci, si). Here, b; 
= (xi, yi, wi, hi, θi)  denotes the bounding box 
parameters including center coordinates (xi ,yi), width 
wi, height hi and orientation angle θi ci € {1,2,...,C} 
represents the class label from C possible categories; 
and si € [0,1] indicates the confidence score. 
In the context of aerial imagery, we define small 
objects as those with area less than 32 x 32 pixels, 
which is consistent with the definition used in 
benchmark datasets like DOTA (1) and VisDrone 
(2). The key challenges are: (1) limited pixel 
information for small objects, (2) complex 
backgrounds with similar patterns, (3) diverse scales 
and orientations, and (4) dense distribution of 
objects in certain regions. 
B. Overall Architecture 
Fig. 1 illustrates the overall architecture of our 
proposed YOLO-Swin hybrid model.  The 
architecture consists of five main components: 
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Fig. 1: architecture of the proposed YOLO-Swin hybrid model for small object detection in aerial imagery 

 
1) Dual Feature Extraction Pathways: A CNN-
based pathway using CSPDarknet (18) and a 
transformer-based pathway using Swin Transformer 
(22) process the input image in parallel to extract 
complementary features. 
 
2) Cross-Scale Feature Fusion Module: This 
module aligns and integrates multi-resolution 
features from both pathways, enabling effective 
information exchange between CNN and 
transformer representations. 
 
3) Context-Aware Small Object Enhancement 
Module: Specifically designed to enhance feature 
representations for small objects by incorporating 
local and global contextual information. 
 
4) Detection Head with Adaptive Anchor 
Assignment: A detection head with class-aware 
prediction branches and an adaptive anchor 
assignment strategy optimized for aerial imagery 
characteristics. 
 
5) Multi-Scale Loss Function: A 
comprehensive loss function that addresses the 
challenges of small object detection, including scale 
imbalance and feature alignment. 
 
C. Dual Feature Extraction Pathways 
1) CNN-based Pathway 
For the CNN-based pathway, we adopt the 
CSPDarknet backbone from YOLOw7 (18) with 
modifications to enhance feature representation for 
small objects. The backbone consists of Cross-Stage 
Partial (CSP) blocks that split feature maps into two 

parts, one passing through dense blocks and the 
other through a shortcut connection, this design 
reduces computational requirements while 
maintaining feature representation capability. 
The CNN pathway produces multi-scale feature maps 
{Fc1, Fc2, Fc3} corresponding to strides of {8, 16, 32} 
with respect to the input image. These feature maps 
capture local patterns and spatial information with 
strong inductive biases beneficial for object 
localization. 
 
2) Transformer-based Pathway 
For the transformer-based pathway, we employ the 
Swin Transformer (22) to capture long-range 
dependencies and global context. The Swin 
Transformer processes images as a sequence of 
patches and employs a hierarchical structure with 
shifted window-based self-attention, enabling 
efficient modeling of interactions between distant 
image regions. 
We modify the original Swin Transformer to better 
accommodate aerial imagery characteristics: 
(1) 

 
 
where Q, K, and V are query, key, and value 
matrices, d is the feature dimension, and B is a 
learnable relative position bias matrix. To enhance 
the model’s capability to capture orientation-
invariant features—critical for aerial imagery—we 
extend the relative position bias with an orientation-
aware component: 
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(2)  
where Bpos is the standard position bias, Bori is an 
orientation bias term, and a is a learnable scaling 
factor. 
The transformer pathway produces multi-scale 
feature maps {FT1, FT2, FT3} that correspond to the 
same spatial resolutions as the CNN pathway’s 
outputs. These feature maps capture global 
dependencies and contextual information that 
complement the CNN pathway’s local feature 
representation. 
D. Cross-Scale Feature Fusion Module 
The cross-scale feature fusion module aims to 
effectively integrate features from both CNN and 
transformer pathways while preserving their 
complementary characteristics. Unlike conventional 
feature fusion approaches that employ simple 
concatenation or addition, our module addresses the 
semantic gap between CNN and transformer features 
through a bidirectional cross-attention mechanism. 
For each scale level i, we first align the channel 
dimensions of CNN features FCi; and transformer 
features FTi using 1× 1convolutions: 
 (3) 

 
 
We then employ a bidirectional cross-attention 
mechanism to facilitate information exchange: 
(4)  

 
(5) 
where CA(Q,K,V) represents the cross-attention 
operation with Q, K, and V as inputs. 
The final fused feature maps for each scale level are 
obtained by combining the cross-attended features 
through a gated fusion mechanism: 
(6)  
 
 
where Wg, is a learnable parameter, ϐ is the sigmoid 
function, and © represents element-wise 
multiplication.Additionally, we incorporate a cross-
scale connection to enable information flow between 
different resolution levels: 
 (7)  

 
where Up denotes upsampling operation, and W, is a 
learnable weight for the downscaled features. The 
cross-scale feature fusion module effectively addresses 
the challenge of aligning and integrating features 
from different architectural paradigms, enabling the 
model to leverage both local spatial information 
from CNNs and global contextual information from 
transformers. 
 
E. Context-Aware Small Object Enhancement 
Module 
To specifically enhance the representation of small 
objects, we propose a context-aware small object 
enhancement module. This module addresses the 
fundamental challenge that small objects lack 
sufficient pixel information for reliable detection by 
incorporating contextual information from 
surrounding regions. 
The module consists of two main components: a 
local context aggregation (LCA) sub-module and a 
global context integration (GCI) sub-module. 
 
1) Local Context Aggregation 

 
The LCA sub-module enhances small object features 
by aggregating information from local 
neighborhoods. For each fused feature map F;, we 
apply a dilated convolution operation with varying 
dilation rates to capture multi-scale local contexts: 
(8) 
where R = {1,2,3} represents the set of dilation rates, 
and w, are learnable weights. 
 
2) Global Context Integration 
The GCI sub-module captures global contextual 
information to help distinguish small objects from 
similar-looking background patterns. We implement 
this using a simplified non-local operation: 
 (9)  
 
 
 
where θ(.), ɸ (.), and g(i) are 1 x 1 convolution 
operations, and γ is a learnable parameter initialized 
as 0. Finally, the enhanced feature maps are obtained 
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by combining the local and global context-enhanced 
features: 
(10) 

 
 
This context-aware enhancement module 
significantly improves the model’s capability to detect 
small objects by enriching their feature 
representations with both local and global contextual 
information. 
 
F, Detection Head with Adaptive Anchor 
Assignment 
The detection head converts enhanced feature maps 
into detection predictions. We design a class-aware 
detection head that employs separate prediction 
branches for different object categories, addressing 
the diversity of object appearances in aerial imagery. 
 
1) Class-Aware Prediction Branches 
For each class category c, we create a dedicated 
prediction branch consisting of a sequence of 
convolutional layers: 
(11) 

 
 
This class-aware design allows the model to learn 
specialized features for different object categories, 
particularly beneficial for small objects with 
distinctive characteristics. 
 
2) Adaptive Anchor Assignment Strategy 
Traditional anchor assignment strategies often 
struggle with aerial imagery due to diverse object 
scales, orientations, and densities. We propose an 
adaptive anchor assignment strategy that dynamically 
adjusts anchor configurations based on dataset 
statistics and scene complexity. 
For each training image, we first analyze the 
distribution of object sizes and orientations to 
determine the optimal anchor configuration. We 
define an adaptive anchor set A = {a1,a2,...,ak} where 
each anchor a1; is represented by a tuple (wj.fj, θj) 
indicating width, height, and orientation. The 
anchor assignment optimization is formulated as: 

(11) 

 
 
where D (oi,aj) measures the dissimilarity between 
object θj and anchor aj, defined as:λ 
(12) 

 
 
where λ1, and λ2 are weighting coefficients, and IoU 
represents the Intersection over Union. Additionally, 
we introduce a scale-aware assignment approach that 
assigns higher weights to small objects during 
training: 
 (13) 

 
 
where ai is the area of object oi, Tsmall is the threshold 
for small objects (set to 32 x 32 pixels), and α > | is a 
scaling factor that increases the importance of small 
objects during training. 
 
G. Multi-Scale Loss Function 
To effectively train our YOLO-Swin hybrid model, 
we design a comprehensive multi-scale loss function 
that addresses the challenges of small object 
detection: 
The feature alignment loss -Zj;j¢, is particularly 
important for our hybrid architecture and is defined 
as: 
(14) 

 
 
where MSE is the mean squared error between the 
cross-attended features. 
 
H. Implementation Details 
We implement our YOLO-Swin hybrid model using 
PyTorch. The CNN pathway employs CSPDarknet 
from YOLOv7 with slight modifications, while the 
transformer pathway uses Swin-Tiny configuration 
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with modified relative position encoding. The input 
images are resized to 640 x 640 pixels while 
maintaining their aspect ratios through padding. 
During training, we apply data augmentation 
techniques specifically designed for aerial imagery, 
including random cropping, rotation, color jittering, 
and mosaic augmentation. The model is trained 
using AdamW optimizer with an initial learning rate 
of 1x 10-4, weight decay of 5 x 10~*, and cosine 
learning rate scheduling. We train the model for 300 
epochs with a batch size of 16 on 4 NVIDIA A100 
GPUs. For the adaptive anchor assignment, we 
initialize the anchor configurations based on k-means 
clustering of the training set bounding boxes and 
subsequently refine them during training. The scale-
aware weighting parameter @ is set to 2.0 based on 
validation experiments. 
 
IV. RESULTS AND DISCUSSION 
In this section, we present comprehensive 
experimental results to evaluate the effectiveness of 
our proposed YOLO-Swin hybrid model for small 

object detection in aerial imagery. We first analyze 
the comparative performance against state-of-the-art 
methods, followed by ablation studies to validate the 
contribution of each component. We then provide 
feature visualization analysis and examine precision-
recall characteristics to gain deeper insights into the 
model’s capabilities. 
 
A. Experimental Setup and Datasets  
We conducted extensive experiments on three 
widely-used benchmark datasets for aerial imagery: 
DOTA (1), VisDrone (2), and FAIR1M (3). All 
experiments were performed using PyTorch on 
NVIDIA A100 GPUs. We used the AdamW 
optimizer with an initial learning rate of 1 x 10-*, 
weight decay of 5 x 1072, and cosine learning rate 
scheduling. To ensure fair comparison, we followed 
standard evaluation protocols using mean Average 
Precision (mAP) metrics, with particular attention to 
mAPs for small objects. 
B. Comparison with State-of-the-Art Methods 

 

 
Fig. 2: Detection performance comparison on DOTA dataset. Our YOLO-Swin hybrid model achieves state-of-

the-art performance across all metrics, with particularly significant improvements for small object detection 
(mAPs). 
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TABLE I: Comparison with state-of-the-art methods on DOTA validation set. Best results are in bold. 

 
 
As shown in Fig. 2 and Table I, our YOLO-Swin 
hybrid model significantly outperforms existing state-
of-the-art methods nacross all metrics on the DOTA 
dataset. Most notably, for small object detection 
(mAPs), our approach achieves 57.4%, representing 
substantial improvements over established models 
such as YOLOv? (51.7%), Swin-T Det (53.2%), and 
CBNetV2 (54.1%). The overall mAP of our model 

reaches 79.3%, demonstrating that the enhanced 
small object detection capability does not come at 
the expense of larger object detection performance, 
where we also achieve state-of-the-art results (mAPyy: 
78.1%, mMAP;: 84.2%). Importantly, our model 
maintains competitive inference speed at 28 FPS, 
making it suitable for real-time applications while 
delivering superior detection performance. 

 
Small Object Detection Performance Across Datasets 

 
Fig. 3: Small object detection performance across datasets. Our YOLO-Swin hybrid model consistently improves 

small object detection by approximately 5.7% across all three benchmark datasets. 
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TABLE II: Cross-dataset performance comparison for small object detection (mAPs). Best results are in bold. 

 
The superior performance of our model is consistent 
across all three benchmark datasets, as evidenced in 
Fig. 3 and Table II. 
On the DOTA dataset, our approach achieves a 
4.2% improvement in mAPs compared to the next 
best model (Swin-T Det). Even more impressive gains 
are observed on the challenging VisDrone dataset, 
where we achieve an 8.0% improvement, and on 
FAIRIM with an 8.5% improvement. This consistent 
performance improvement of approximately 5.7% 
across diverse datasets demonstrates the robustness 
and generalizability of our approach. 

 
A key observation is that transformer-based models 
(Swin-T Det) generally outperform pure CNN-based 
approaches (YOLOv4, YOLOv5) for small object 
detection, but our hybrid approach leverages the 
strengths of both paradigms to achieve superior 
results. This validates our hypothesis that combining 
the local feature extraction capabilities of YOLO 
with the global context modeling of Swin 
Transformer creates a more effective architecture for 
small object detection. 
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C. Ablation Study 
Ablation Study: Effect of Adding Components 

 
Fig. 4: Ablation study showing the effect of adding components (top) and removing components (bottom) on 

detection performance. The Context-Aware Small Object Enhancement module provides the largest 
improvement (+1.7% mAPs) for small object detection. 
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TABLE III: Ablation study of different components in our proposed YOLO-Swin hybrid model on DOTA 
validation set. 

 
To understand the contribution of each component 
in our hybrid architecture, we conducted 
comprehensive ablation studies as shown in Fig. 4 
and Table III. Starting with the YOLOv7 baseline 
(51.7% mAPs), we incrementally added each 
component and measured the performance gain: 
 
1) Addition of Swin Transformer: The integration 
of the Swin Transformer pathway increases mAPs by 
1.9%, confirming the importance of global context 
modeling for small object detection. 
 
2) Cross-Scale Feature Fusion: This module provides 
a further 1.5% improvement by effectively 
integrating features from both CNN and transformer 
pathways across different scales. 
 
3) Context-Aware Small Object Enhancement: This 
component yields the most significant improvement 
for small objects (+1.7% mAPs), validating our 
design focus on enhancing small object 
representation through contextual information. 
 

4) Adaptive Anchor Assignment: The final 
component adds a modest but important 0.6% 
improvement by optimizing anchor configurations 
for aerial imagery characteristics. 
The bottom half of Fig. 4 illustrates the impact of 
removing individual components from the full 
model. The most substantial performance drops 
occur when removing the Transformer Pathway (-
5.4% mAPs) and Cross Attention mechanism (-3,2% 
mAPs), highlighting their critical role in the model. 
The Local Context Module (-1.4%) and Global 
Context Module (-1.1%) in our enhancement 
architecture also contribute significantly to small 
object detection performance. These results confirm 
that each component of our proposed architecture 
plays an important role, with the Context-Aware 
Small Object Enhancement and the Transformer 
Pathway being particularly crucial for detecting small 
objects in aerial imagery. 
 
D. Feature Visualization Analysis 
Feature Map Visualization for Small Object 
Detection 
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Fig. 5: Feature map visualization for small object detection. The progression shows how our YOLO-Swin hybrid 
model enhances small object features through the CNN pathway (top row), Transformer pathway (middle row), 

and feature fusion and enhancement modules (bottom row). 
 
Fig. 5 provides a visual analysis of how our model 
processes and enhances features for small object 
detection. The feature maps illustrate the progression 
of a small target object through different stages of 
our hybrid architecture: The CNN pathway (top row) 
demonstrates increasingly stronger activations at 
higher levels, but primarily focuses on larger objects 
while providing limited response to the small target 
object. In contrast, the Transformer pathway (middle 
row) exhibits better contextual understanding with 
broader activation patterns around small objects. 
This confirms the Transformer’s ability to model 
long-range dependencies, which is crucial for 
distinguishing small objects from complex 
backgrounds. 

The Cross-Scale Feature Fusion (bottom left and 
middle) successfully integrates the complementary 
strengths of both pathways. Most importantly, the 
Context-Aware Small Object Enhancement module 
(bottom right) significantly amplifies the feature 
response for the small target object, resulting in a 
much stronger activation that facilitates reliable 
detection. This visualization demonstrates how our 
hybrid architecture progressively refines feature 
representations, with each component contributing 
to the final enhanced representation of small objects. 
 
E. Precision-Recall Analysis 
Precision-Recall Curves for Small Object Detection 
(DOTA Dataset) 
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Fig. 6: Precision-Recall curves for small object detection on the DOTA dataset. Our YOLO-Swin hybrid model 
maintains higher precision across all recall levels, particularly in high recall regions (highlighted in green) and 

low recall regions (highlighted in blue). 

 
TABLE IV: Average Precision (AP) for small object detection on DOTA dataset across different models. 

 
Fig. 6 and Table IV show precision-recall curves and 
Average Precision (AP) metrics for small object 
detection on the DOTA dataset. Our YOLO-Swin 
hybrid model (AP=0.767) clearly outperforms other 
state-of-the-art methods, including YOLOv7 
(AP=0.696), Swin-T Det (AP=0.710), and YOLOv5 
(AP=0.650), achieving an 11.7% improvement over 

the YOLOv5 baseline.Two regions of improvement 
are particularly noteworthy: 
 
1) Better precision at low recall: Our model 
maintains higher precision in the low recall region 
(highlighted in blue), indicating more reliable 
detection of the most confident small objects with 
fewer false positives. 
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2) Performance gain in high recall region: The 
model also shows substantial improvements in the 
high recall region (highlighted in green), 
demonstrating its ability to detect more challenging 
small objects that other models miss. This balanced 
improvement across the entire precision-recall curve 
highlights the comprehensive enhancement provided 
by our approach, making it suitable for both high-
precision applications (where false positives must be 
minimized) and high-recall scenarios (where 
detecting all small objects is critical). 
 
Discussion 
The results of our experiments strongly support the 
initial hypothesis that a hybrid architecture 
combining Convolutional Neural Networks (CNNs) 
and Transformer models, when integrated with 
specialized techniques tailored for small object 
detection, can substantially enhance the detection 
accuracy in aerial imagery. CNNs are inherently 
adept at extracting local features due to their 
convolutional nature, which focuses on small 
receptive fields and leverages spatial hierarchies (42). 
This makes them especially useful for identifying 
edges, textures, and small-scale patterns. On the 
other hand, Transformers, with their self-attention 
mechanism, are capable of modeling long-range 
dependencies and capturing the global structure of 
the image, which CNNs alone might overlook (43). 
By combining these two architectures, the model 
benefits from both localized feature extraction and a 
holistic understanding of the scene, producing a 
richer and more informative feature representation. 
This synergy allows for improved discrimination 
between small objects and the complex backgrounds 
typically present in aerial images, where small objects 
are often surrounded by visually similar structures 
(44). 
A major insight from our analysis is the 
indispensable role of contextual information in 
detecting small objects. The introduction of the 
Context-Aware Small Object Enhancement 
(CASOE) module led to a significant improvement 
in performance, specifically a 1.7% increase in mean 
Average Precision for small objects (mAPs). This 
improvement highlights the difficulty small objects 
present due to their limited pixel footprint, which 
often contains insufficient information for the 

model to make confident detections (45). By 
incorporating a wider context around the object of 
interest, the model is better equipped to infer object 
presence even when the object itself occupies only a 
few pixels (46). In real-world aerial scenarios, small 
vehicles, animals, or structures can be visually 
ambiguous when considered in isolation. However, 
their surroundings—such as roads, shadows, or 
adjacent objects—can provide important cues that 
assist in accurate identification (47). The CASOE 
module leverages this principle by expanding the 
model’s perceptual field around candidate objects, 
helping it to detect items that might otherwise be 
missed due to insufficient internal features. 
Further improvements are observed through the 
integration of the Cross-Scale Feature Fusion (CSFF) 
module, which addresses the challenge of unifying 
features extracted from different scales and 
architectural paradigms. In our hybrid model, CNNs 
and Transformers operate on different principles 
and often generate features with varying semantics 
and resolutions (48). The CSFF module serves as a 
bridge between these distinct representations, 
facilitating the flow of information across scale levels 
and between the CNN and Transformer branches 
(8). This fusion process helps preserve both fine-
grained details and high-level abstractions, ensuring 
that small objects can be detected regardless of their 
position in the feature hierarchy (49). By aligning 
and integrating multi-scale information, the model 
becomes more resilient to variations in object size 
and improves its ability to identify partially occluded 
or low-resolution targets. Such a mechanism is 
particularly valuable in aerial imagery, where objects 
not only vary in size but may also appear distorted 
due to perspective or altitude differences (50). 
In addition to architectural enhancements, our 
model incorporates an Adaptive Anchor Assignment 
(AAA) strategy, specifically designed to tackle the 
unique challenges posed by aerial imagery. Unlike 
ground-based imagery, aerial images often contain 
objects that appear at diverse scales, orientations, 
and densities, making standard anchor-based 
detection strategies less effective (11). The AAA 
mechanism dynamically assigns anchors based on 
object properties and spatial patterns observed 
during training, optimizing the detection process for 
aerial conditions (42). This adaptability is crucial for 
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maintaining detection precision across different 
image types, whether they are high-altitude satellite 
images or low-flying drone captures (53). By 
accounting for the irregular distribution and 
orientation of objects in aerial views, the model can 
better localize and classify them, leading to fewer 
missed detections and reduced false positives (54). 
This customization makes our method more 
practical for real-world deployment, where aerial 
image characteristics can vary significantly across 
missions and geographical locations. 
Finally, the robustness and generalizability of our 
approach are demonstrated by the consistent 
performance improvements across multiple 
benchmark datasets. We observed an average gain of 
approximately 5.7% in small object detection 
performance across diverse aerial imagery datasets, 
indicating that our method is not only effective but 
also versatile in handling a variety of imaging 
conditions, object distributions, and environmental 
complexities (55). Despite these advancements, we 
acknowledge that the detection of extremely small 
objects, particularly those with dimensions below 
10×10 pixels, remains a persistent challenge (56). 
Such objects often lack sufficient feature 
representation even after contextual enhancement 
and multi-scale fusion. This limitation points to 
promising directions for future research, including 
the integration of super-resolution techniques that 
can artificially enhance the resolution of candidate 
regions (55), or the development of even more 
specialized modules tailored to amplify signal 
strength in extremely low-pixel regions (54). 
Addressing these challenges could further push the 
boundaries of small object detection and enhance 
performance in critical applications such as 
surveillance, disaster response, and environmental 
monitoring. 
 
CONCLUSION 
In this paper, we have presented a novel YOLO-Swin 
hybrid architecture for enhanced small object 
detection in aerial imagery that effectively addresses 
the fundamental challenges of limited pixel 
information, complex backgrounds, and scale 
variations. Our approach combines the real-time 
inference capabilities of YOLO with the global 
context modeling strengths of Swin Transformer, 

integrated through a cross-scale feature fusion 
module that bridges the semantic gap between CNN 
and transformer features. Experimental results on 
three benchmark datasets (DOTA, VisDrone, and 
FAIRIM) demonstrate that our model consistently 
outperforms existing state-of-the-art methods, 
achieving a significant 5.7% improvement in mAPs 
for small objects while maintaining real-time 
inference capabilities at 28 FPS. Comprehensive 
ablation studies confirm that the Context-Aware 
Small Object Enhancement module provides the 
most substantial contribution (+1.7% mAPs) by 
effectively incorporating both local and global 
contextual information to enhance small object 
representation. The proposed adaptive anchor 
assignment strategy further improves performance by 
optimizing detection for the unique characteristics of 
aerial imagery. While our model achieves state-of-the-
art results, future work could explore super-
resolution techniques or more specialized 
enhancement approaches for extremely small objects 
under 10x10 pixels. The significant performance 
improvements and real-time processing capabilities 
of our YOLO-Swin hybrid model make it particularly 
valuable for practical applications such as disaster 
response, environmental monitoring, urban 
planning, and security surveillance, where accurate 
and efficient detection of small objects in aerial 
imagery is essential. 
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