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 Abstract 

Background: Proton Exchange Membrane (PEM) water electrolysis is an 
important technology for sustainable hydrogen production, especially for 
integration into renewable energy systems. However, achieving the best dynamic 
electrochemical response in PEM is difficult due to the complicated interplays 
among different parameters for the operation, which involve temperature, pressure 
and current density. 
Objective: The objective of this study is to build AI-based models to predict and 
optimize the performance of PEM water electrolyzers for various operating points, 
leading to improved hydrogen yield as well as overall energy efficacy. 
Method: The operation data of ten PEM electrolysers (input parameters: 
temperature, pressure, and current density, performance indicators: hydrogen 
production rate, energy consumption and voltage efficiency) were collected. Diverse 
machine learning algorithms, such as Artificial Neural Networks (ANNs), 
Support Vector Machines (SVMs) and Decision Trees, were employed to develop 
the predictive models. Grid Search and Genetic Algorithms were used to optimize 
the hyper parameters of the models. PCA and SHapley Additive ex-Planations 
(SHAP) are used for feature selection. For operating conditions, a reinforcement 
learning and an evolutionary algorithm were used to tune system parameters 
while operating. 
Results: The accuracy of the ANN model was high (R² = 0.93). System 
efficiency was significantly increased by 30% hydrogen production and reduction 
of 15% energy consumption after optimization using reinforcement learning. 
Conclusion: The AI-based models considerably improve the performance and 
cost-effectiveness of PEM water electrolysis stacks. The findings underscore the 
power of machine learning and optimization methods for innovation in hydrogen 
generation technologies towards sustainable energy. 
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INTRODUCTION
The combination of artificial intelligence (AI) with 
proton exchange membrane (PEM) water electrolysis 
is a promising strategy to increase the performance 
and efficiency of hydrogen generation. PEM 
electrolysis, a key technology of producing green 

hydrogen, has dramatic complex electrochemical 
reactions and is heavily affected by several variables 
such as temperature, pressure, current density, and 
catalysts (Zhang et al., 2024). 

 

 
 

Conventional practice for the development and 
optimization of these systems frequently is based on 
empirical testing and trail-and-error techniques so 
that the development takes time and the resources 

necessary may be extensive. AI-based modeling is a 
data-first approach and constructs predictive models 
for the dynamic behavior of PEM electrolysis under 
different operational conditions (Shi et al., 2024). 

 

 
 
With the recent developments of ML technology, 
advanced models able to predict PEM electrolyze 
transient electrochemical responses have been 
developed. For example, ANNs have been used to 

establish correlation models for predicting hydrogen 
mass flow rates, with high accuracy (determination 
coefficients up to 0.90 and mean squared errors 
down to 0.00337) (Hossain & Rahman, 2024). 
These models take as input the stack current, oxygen 
pressure, hydrogen pressure and stack temperature 
and output the dynamics of the system (Mohamed et 

al., 2022). This provides a marked departure from 
traditional optimization methods, enabling finer 
predictions and on-the-fly adjustments. 
In addition, the optimization of MEAs, also a key 
component in PEM electrolyzes, has   been 
improved with AI methods. Machine learning 
models, such as XGBoost have been used to predict 
MEA performance and durability with R-squared 
values up to 0.99926 (Zhang et al., 2022). Through 
using SHapley Additive exPlanations (SHAP) for 
model interpretation, and genetic algorithms for 
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global optimization, the representative factors 
affecting MEA performance are recognized and 

serve to make efficiency and durability a remarkable 
increasing (Chen et al., 2024). 

 

 
 

Monitoring and control of PEM water electrolysis 
systems in operation is essential due to  the dynamic 
nature of the systems. AI-enhanced models 
combined with sensor data are able to support the 
notion of adaptive control based on programmed 
task adjustments as a response to changes in 

operating conditions (Li et al., 2025). This feature is 
valuable for applications where the input power 
comes from renewable sources that are variable by 
nature. AI models contribute in minimizing energy 
consumption and efficient utilization of hydrogen 

production by providing an exact control system 
(Ding et al., 2024). 
In brief, the AI used for modeling and optimizing 
dynamic electrochemical performance of PEM water 
electrolysis systems is novel. By exploiting data-
driven methods, researchers will be able to design 
predictive models and optimization solutions with 
higher precision and efficiency, contributing to 
better performance, lower cost, and higher scalability 
of hydrogen production technologies (Batool et al., 
2024). 
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Although there has been significant progress in 
proton exchange membrane water electrolysis 
(PEMWE) systems, it is still difficult to achieve 
optimal dynamic electrochemical responses because 
there are complicated relationships among the many 
operational parameters. The application of AI in the 
modeling of systems and optimization had provided 
a promising way to solve such complexities and 
improve system performance (Zhang et al., 2024). 
This work is significant as it investigates the 
capability of AI to simulate and optimize dynamic 
electrochemical performance for PEM water 
electrolysis systems with the goal of achieving 
efficient and scalable hydrogen production. The 
results might help to find out more sustainable and 

cheaper energy alternatives (Hossain & Rahman, 
2024). 
In this study, we are to discuss the impact of the 
artificial intelligence tools for modeling and 
optimizing the dynamic electrochemical responses 
introduced by the proton exchange membrane water 
electrolysis (PEMWE) system, including the 
performance and efficiency (Mohamed et al., 2022). 
 
Methodology  
The approach of this work is integrated development 
of AI-driven models, which simulate and optimize 
dynamic electrochemical responses in Proton 
Exchange Membrane (PEM) water electrolysis 
systems. The latter is the first step inuring 
information on a variety of PEM electrolyzes 
operating a t various conditions. Data include several 
input parameters e.g., stack temperature, pressure, 
current density, hydrogen and oxygen flow rates and 
system performance indicators e.g., hydrogen 
production rate, energy consumption, voltage 
efficiency. Real time sensors in the electrolysis plant 
are used to measure signals, which is pre-processed to 

reduce noise and to ensure uniformity. The prepared 
data provides the basis for constructing predictive 
models by means of machine learning methods 

including artificial neural networks (ANNs), support 
vector machines (SVMs), and decision trees. 
In the second stage, machine learning models are 
built based on the acquired data to predict the ECH 
process dynamics in the PEM electrolyze system. The 
models are then built through supervised learning 
methods where the input variables (e.g., operation 
condition) are linked with the output responses (e.g. 
hydrogen rate of production). Remaining hyper-
parameters are optimized with grid search or genetic 
algorithms to improve the performance of the 
models with better generalization capacity. Also, 
different variable selection methods (e.g., PCA, 
Shapley additive explanation (SHAP)) are employed 
to determine which variables are having more 
importance with respect to the system performance. 
The trained AI model is the further validated with 
the independent testing dataset to determine the 
model’s accuracy and generalization capability. 
The last step is to optimize the operational 
parameters of the PEM electrolyze system with the 
aid of the AI models developed. The optimization is 
based on reinforcement learning (RL) or 
evolutionary algorithms where the act of the AI 
model will update continuously in real-time 
depending on the predictions. These are also 
designed to maximize hydrogen generation and to 
minimize consumption of energy, i.e., they ensure 
the system operation at the most efficient point 
against variation in system condition. The control is 
realized by using the optimized control schemes 
inside the system, thus enabling the system 
adaptively works with the varying parameters like 
renewable energy input, temperature changes, and 
load fluctuations. The optimization results are also 
discussed to identify efficiencies and environmental 
sustainability of the PEM water electrolysis system, 
offering an understanding of how AI can be 
influential in the future of hydrogen production 
technologies. 
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Results  
Phase 1: Data Collection and Preprocessing 
Data Collected Key Results Performance Metrics 
Real-time Data from PEM 
Electrolyzer Systems 

- Data from varying operating conditions (temperature, 
pressure, current density) was collected from 10 PEM 
electrolyzers. 
- Hydrogen production rate, energy consumption, and 
voltage efficiency were recorded. 

- Number of Data Points: 12,000 
- Average Hydrogen Production 
Rate: 10.5 Nm³/h 
- Average Energy Consumption: 
15.3 kWh/kg H₂ 

 
In Phase 1, real-time data for 10 PEM electrolyzer 
systems were obtained under different conditions, 
such as temperature, pressure, current density. The 
recorded data covered the performance criteria, 
hydrogen production rate, and energy consumption,  

 
and revealed the system performance in the study. 
On 12,000 data points, the average hydrogen 
production rate was 10.5 Nm³/h and the energy 
consumption 15.3 kWh/kg H₂ which points to 
baseline systems performance.

 
Phase 2: Machine Learning Model Development 
Model Type Key Results Performance Metrics 
Artificial Neural 
Networks (ANNs) 

- The ANN model showed a strong ability to 
predict hydrogen production and energy 
consumption. 
- Achieved high accuracy with minimal error. 

- R² (Coefficient of Determination): 0.93 
- Mean Squared Error (MSE): 0.003 
- Hydrogen Production Prediction Error: 
±3% 

Support Vector 
Machines (SVMs) 

- The SVM model was effective in predicting 
energy consumption. 
- Less computationally intensive compared to 
ANN. 

-R²: 0.91 
- MSE: 0.0045 
- Prediction Error for Energy 
Consumption: ±4% 

Decision Trees - Decision trees were used for feature selection. 
- Helped in identifying key variables affecting 
system performance. 

- Model Accuracy: 85% 
- Key Influential Variables Identified: 
Current Density, Stack Temperature, 
Pressure 

 
During Phase 2, PEM electrolyzer electrochemical 
performance was modeled using machine learning 
models such as: Artificial Neural Networks (ANN), 
Support Vector Machines (SVM) and Decision 
Trees. The ANNs model presented the best 
prediction performance (R² = 0.93, minimum MSE  
 

 
= 0.003), while SVMs was the least computationally 
demanding method with almost equivalent, but 
slightly lower R² (0.91). Decision trees were 
employed to select the features, which exposed the 
important factors, i.e. current density, stack 
temperature, and pressure, to have a substantial 
impact on the system performance. 

Phase 3: Hyper-parameter Optimization 
Optimization 
Technique 

Key Results Performance Metrics 

Grid Search - Hyper-parameter tuning of ANN models led to 
a 5% improvement in accuracy. 
- Optimized the learning rate and number of 
hidden layers. 

- Improvement in R²: +5% 
- Optimized Hyper-parameters: Learning 
Rate: 0.01, Hidden Layers: 3 

Genetic Algorithms - Used for model selection and optimization. 
- Improved overall model performance by 
adjusting the network architecture. 

- Prediction Error Reduction: -3% 
- Optimized Model Configuration: 5 layers, 
256 nodes per layer 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022


Policy Research Journal  
ISSN (E): 3006-7030 ISSN (P) : 3006-7022  Volume 3, Issue 5, 2025 
 

https://theprj.org             | Kushieb et al., 2025 | Page 273 

In Stage 3, heuristics to optimize hyper-parameters 
were used to optimize the performance of the 
machine learning models. The ANN model was 5% 
more accurate after grid search that simultaneously 
optimised the learning rate and number of hidden 
layers and genetic algorithms improved the accuracy 

of the model by adjusting network structure with a 
slight decrease in prediction errors by 3%. These 
optimization approaches helped in optimizing 
models and better predictions and performance in 
general. 

 
Phase 4: Feature Selection Using PCA and SHAP 
Feature Selection 
Method 

Key Results Performance Metrics 

Principal Component 
Analysis (PCA) 

- PCA reduced the feature set, identifying the top 3 
most influential features: current density, stack 
temperature, and pressure. 
- Eliminated redundant variables. 

- Top 3 Features: Current Density, 
Stack Temperature, Pressure 

SHapley Additive 
exPlanations (SHAP) 

- SHAP analysis provided insights into the contribution 
of each variable to system performance. 
- Confirmed the dominance of current density in 
predicting hydrogen production. 

- Most Influential Variable 
(SHAP): Current Density 
(Influence: 55%) 
- Other Influential Variables: Stack 
Temperature (25%), Pressure 
(20%) 

 
[4].Phase 4 In the last phase, by using PCA 
(Principal component analysis) and SHAP(Shapley 
additive explanations) feature selection techniques, 
the most effective variables regarding the system 
performance were determined. The feature set was 
reduced to the top three variables—current density, 
stack temperature and pressure by PCA which  

 
successfully saved only these principal components, 
while SHAP analysis indicated that the most 
discriminative dimension was related to current 
density for the process of the hydrogen production. 
This stage emphasized the role of the current density 
to manage the best performance of the system and 
minimize redundant variables. 

 
Phase 5: Optimization of Operational Parameters 
Optimization Method Key Results Performance Metrics 
Reinforcement 
Learning (RL) 

- RL optimized operational conditions, leading 
to a 30% increase in hydrogen production and a 
15% reduction in energy consumption. 

- Hydrogen Production Increase: +30% 
- Energy Consumption Reduction: -15% 
- Operational Efficiency: 92% 

Evolutionary 
Algorithms 

- Improved system stability during dynamic 
operations under fluctuating renewable energy 
input. 
- AI-controlled system showed adaptive behavior. 

- Stability: 97% under fluctuating 
conditions 
- Energy Consumption Variability: ±5% 

 
Finally, in Phase 5, RL and evolutionary algorithms 
were used to optimize the operational settings of the 

PEM electrolyzer system. RL resulted in a 30% 
increase in hydrogen yield and a 15% decrease in 
energy consumption, and it achieved an operational 
efficiency of 92%. The stability of the system was  

 
guaranteed by the evolutionary algorithms in the 
presence of variable input power from the renewable 
sources by keeping stability at 97% and minimizing 
variability of energy consumption to ±5% which 
indicated the adaptability of the system under 
dynamic circumstances. 
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Phase 6: Real-Time Adaptive Control Implementation 
Control Method Key Results Performance Metrics 
AI-Integrated 
Adaptive Control 

- Real-time adjustments based on AI model 
predictions helped maintain optimal system 
performance. 
- The system adapted well to dynamic 
environmental changes (e.g., temperature, 
load). 

- System Stability: 98% under fluctuating 
conditions 
- Hydrogen Production Consistency: ±4% 
variation 
- Energy Consumption Consistency: ±3% 

 
Phase 6 resulted in the seamless installation of the 
AI derived adaptive control algorithms to enable 
intelligent local control of the PEM electrolyser 
system operating parameters. The adaptive control 
system with AI integration features was successful in 
this study to cater for the varying conditions while 
maintaining 98% steady system. The uniformity of 
hydrogen production ranged between 100 ± 4%, 
and that of energy consumption was limited to 100 ± 
3%, indicating remarkably the AI-based decision and 
adaptive control in real-time level. 
 
Discussion 
The integration of AI-based models in Proton 
Exchange Membrane (PEM) water electrolysis 
systems is highly promising for the efficient control 
of the dynamic electrochemical behavior of these 
systems. The findings from this research highlighted 
the potential of machine learning models such as 
ANNs, SVMs, and decision trees in the estimation of 
hydrogen production, energy consumption and 
voltage efficiency at a range of operating variables. 
The ANN model (R² = 0.93) was also able to account 
for the complex interplay between input parameters 
and system responses with higher accuracy compared 
to the regression based models (Meyer et al., 2023). 
This discovery is in line with prior research that also 
indicated the potential of AI models to enhance the 
performance and effectiveness of energy systems 
(Wang et al., 2022). Moreover, the optimization 
strategies (hyper parameter tuning, and in particular 
the feature selection process) improved the accuracy 
of predictive models, in good agreement with 
analogous works, where also the impact of the hyper 
parameter optimization on the quality of machine 
learning predictions in electrochemical systems was 
pointed out (Zhang et al., 2021). Especially, RL 
enabled the real-time optimization of operational 
parameters and improved H2 production by 30%,  

 
and energy consumption decreased by 15%, which 
coincides with the findings in AI-based control 
systems in other renewable energy industries (Li et 
al., 2024). 
 
Future Direction 
In the future, more attention can be dedicated to the 
further application of AI models into PEM water 
electrolysis systems to meet the needs, especially for 
the large-scale operations. This extends to the 
upscaling of the models to other, and more complex 
data from bigger electrolysis systems and real-time 
feedback from other system factors, like temperatures 
or renewable energy sources. Moreover, hybrid AI 
methods involving the mixture of reinforcement 
learning together with deep learning can be used in 
future as future to further enhance the optimization 

and energy efficiency in PEM systems. 
 
Limitations 
There are several limitations of this study, despite its 
impressive results. The training set was derived from 
a limited subset of operational conditions and may 
not be fully representative of variability in real-world 

usage. In addition, although the predictive power of 
the AI models was high, the complexity of PEMWE 
systems involved suggests that these models may 
require fine-tuning to handle unexpected operating 
conditions or abnormal conditions. Finally, the 
optimization outcomes were validated in controlled 
situation and circumstantial validation in larger real 
installations are needed to validate the robustness of 
these models. 
 
Conclusion 
Finally, the results of this research underline the 
great capability of AI-based models to enhance the 
performance and the operation of the PEM water 
electrolysis systems. By using machine learning 
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algorithms and optimization methods, significant 
enhancement was made on hydrogen generation, 
energy consumption and overall system efficiency. 
These results add to the growing literature on AI in 
energy systems and lay a foundation for future 
studies targeting the integration of AI into large-scale 
real-time control and optimization of PEM water 
electrolysis systems. 
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