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INTRODUCTION

Suppose B which show the forms of class function

)=+ 1)

=2

within the open unit disk, the functions in question
be analytical denoted as ={:]|<1} Let
represent a subgroup of , consisting functions of

univalent defined in . For 0 < <1, it is possible
to define the groups of starlike and close-to-convex
function of order analytically in  as ()=
{: (% > }, where
represents the class of starlike functions [21]. In
simpler terms, 0) = which refers to the
well-known class of starlike functions, and similarly,
O = are most close group of starlike and
close-to-convex functions, in that order [19].
We now provide some fundamental concepts and
explanations regarding -calculus [18]. The definition

of -number [ ] for (0,1),

=0
Also, the -factorial [ ] !is given by

[1'=0  [1!'= [I.

=0
Assume (1 1<1) o=

Then the g-shifted factorial ( ; ) is describe by

(i =1 ()
= -

=1
_{_ :

{0}.

Suppose o}. Then g-Gamma
function is stated by
F():—(( - ))00(1— Y-, 0< <1
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The g-derivate operator of a function is

explained in a given subgroup of , by

¢ O
O-0O) L,

=y @-)" (2
(0), =0.
The given (0) is present. So easily we can analyze
from the above equation (2) that ( ) R 1_( )=
O).

By utilizing the -derivative operator

lim

, the classes
and  of starlike and  -closeto-convex

functions are described as follows:

[1]: A function is said to be in the set if

1 1
|ﬁ( )( ) e e e
, (O 3)

1 _ H
is used in set  if here a star-

[2]. A function
like function h such as

1 1
ﬂ( )O) = 1T| =T
, (O 4
It is stated that, when - 17, the sets and

decrease  the most familiar groups and
respectively, of star-like and close-to-convex functions
[16].

In both pure and applied mathematics heavily rely
on special functions [20]. In geometric function
theory, these functions have made significant

1. Q -generalized Dini function:

contributions, especially in resolving the well-known
Bieberbach conjecture [17]. Researchers became
interested in this application of special functions in
function theory[10]. The geometric properties of
several special function types are the subject of a
large body of literature [14]. For example, the
univalence and starlikeness of hypergeometric
functions were investigated by Owa and Srivastava [3].
In order to investigate certain classes of univalent
functions, Srivastava and Dziok [4,5] developed a
convolution operator by employing a generalized
hypergeometric function (6]

Special functions are mathematical functions that
arise frequently in various areas of science and
engineering, often as answers to integral or different
equations [11]. They typically generalize the basic
functions like trigonometric, exponential, and
logarithmic functions, and play an essential role in
fields such as physics, engineering, probability theory,
and number theory [20].

Special functions model various physical systems,
such as wave phenomena, heat conduction, and
quantum mechanics. They are widely used in signal
processing, control theory, and electrical engineering
for solving complex system equations.

The study of special functions has seen continuous
development since the 18th century, with Carl
Friedrich Gauss playing a major role in shaping this
ongoing effort toward a unified theory of special
functions [20].

Let ", the -generalized Dini function ~ ('; ) is describe by

LGOC=) LGSV G,

-1

1 e ra)Z) (e Q) +z)

() =0 C
because the function

function in the normalized version shown below,

()=

Where
(=) (+2)
40, 3)
We need following lemmas to prove our main results

Lemma 01:([2]) Let and =0, 1 =2Lland(

1-

. (5 ) determined by that is not from set A, We examine the -generalized Dini
R G VR

2 ()1 1-0 _
) -1/2 [ ( ! )

) be a series of actual numbers in which
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l_
= [ ] = l(— ) , , (0,1)
suppose,
1= 1= ,= 3=,.= =,.=0
Or
1 = 1 = 2 = 3 = = ' = 2
()= + :
=2
Where,
O=1—
Lemma 02([6]) Consider () be a series of actual numbers in which,
== . 0.
Let
1= 3= 5= 2.2 , 1=,.20
either
1< 3< 56< 7. 5 4 <,.<2
At that point,
()= + 2 1 271 .
=2
Where
O=1=5

2. Main work:

Consider
(;)= + N
Where )
_(=) (+2)
4 (., 1)
_ ) (+2)
4 ()0 )
(;) t=(@1-)
(:;)=@Q-)
At this step ():1T
O= @+)*

(- (1+2=3+ 4

O=+ (-n
=2
By Convolution
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(,) :1T (;)
= -+ 00:1 +1
_ (=) (+2)
where T4 ()

Theorem 3.1.Let =0, =0 and
8(1- »2(1- *¥»)=0, (01)

Then,  (; ) g-Generalied Dini Function is close-to-convexity regarding star-like function
O=1—
Proof. let
1-)
= N 1).

1 _ ] ] (01 )
So that

(;)= +

=1
() TR +2( 1)
_4_1(;)—1(§)—1
_@- ) O TR +2( -1y
Co1- 47 () ()

Put =1
_@=-hH Ot +2a-1)
et O RORE )i
_Q-) ()% (+2(0))
t Ty e ),
1=1
Put =2
_@-)a+) O C+2@)
’ 1- 4 (:n( i
By -shifted factorial definition * +
Def(,) = Q- H)=@-)A- H2- D...(d—- 7Y
(; 1=@Q-)
(:n=>0Q-)

(;) =@-)H1-3H(- 3..a- )
() == 6= Mas Mea-
+ 2
2= ) aHa- )
_@+)o) (+2)

274 a-H(- ) =1

We'll demonstrate it next.
1= ( N— {1})
That's what this suggests.

- " O s+ A= ) O TP+ 21
1- 4 11 E:) +1)—1( 7)o+ 1= 14 o) at ) a
_oay O (*20) g O 7t (+2( -1

@ )4(;)(;) =@ )4‘1(;)—1(;)—1
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O (+2) 400 (+2( -1)

+1
G sy =07 )T S
+1 _
d- +1)(;)((;+)2)S a= CoaCi)
U= e =4 IS
a-_*H (+2) - ) (+2( -1)
2a- Ha- *H = 1
This is equivalent
(1- *N). . (+2 )=4@- 21— * H( +2( -1)
For =0, = =0 , =0, =0.
(1- *Ho@O+2 )=s401- )Y(1-
0<4@- »X@Q- * Y2 -1
Puc =2

0=4(1- 2°(1- *2Y)22-1))
0=4(1- 2°(1- )2(1))
0=4(1- 2°(1- *1).2
0=8(1- 2)°(1- *Y)
s(1- 2)°(1- *)=o0
=0 and

Theorem 3.2: Let =0,

T O+2( -1))

16(1— ) 21- )Y - )" ( +4 —-H=21- )Y *™(+4) (0,1
Then, the normalized the -Generalized Dini function, where
=1
Proof. Consider
_ ()
= Ty ; . (01).
Sothat (; )= + °°=1
where
_ O+ -
(14 _1)( v ) ()
= 1= , . (01).
So that
_a- ) O +2( -1)
1- 471 () aC )
Put =1
_@a-hH Ot +2a2-1)
! 1— 4% (5 )m1( 5 )1a
_a-) ()% ( +2(0))
YT 4% (o 5 o
_a-) 140
1- 1. .11
= —-—=1
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Put =3
_@=3 ()P +2B-1)
PTUI- 8T ()aa(  )aa
=(1— A+ + 2 ()2 ( +2(2)
: 1- £ (50 5 %
() +4
=(1 2
SRR TR G WG
It suggest that 3=1
By -shifted definition
5 ()2 ( +4)
e aHa-a9e- a- -
A+ + ()P ( +4 <1
16 (1_ _ 2+ 3)(1_ _ +1+ 2+1)_
Next we will explain that.
2 1= -1 ( —{1})
1-2* (O +22 +1-1))
1- N G PRI G PR
- Q-2 () T (+22 -1-1)
B 1- 42 711 () (o )2 1
1-2*"H ()2 (+22 ) 1-2"1 ()2 2(+22 -2)
1- 42 ()20 3)2 1- 42 72 (5 —2( 5 )2 =2
a-2"h ()2 (+4) ks Q- 21 42()Y ( +22 -2)
1- 42 (50205 )2 1 p 422 (52 2( 3 )2 =2
Q- 2" +4) 1= 2"NHa( +22 -2)
42 (502 ()2 4% 2 (502 25 )2 =2
1- 2" +4) - 1- 2 Ha( +22 -2)
42 (50 C 502 4 205 )2 =20 )2 2
1= 2" +4) - 1- 2 Ha( +22 -2)
Ci2C ) B 25 )2 =20 3 )2 =2
1-2*"H( +4) - (1- 2 Ha( +4 -4
Ci) () B (5 )2 =2 5 )2 =2
- 2" +4 ) - 1- 2 Ha( +4 -4
Ci )2 () B (3 )2 =203 )2 =2
21— 2" +4 ) - 16(1— 27 ( +4 —4)
Ci )2 () B (3 )2 =203 )2 =2
By -shifted definition
2(1_ 2 +1)( +14 )
+2)...(1— +2 —2)(1_ +2)

(1-2a-9.0-272)a- )1~ -
16(1— 2 1) ( +4 —4)

= - 9a- 9.a- 2 90a- )a- D.a- 79
2(1 — 2 +1
(1 )( +4 ) < 16(1— 2 —1)( +4 _4)

a-Ha- 7y
1= 2 +4 ) = 16(- 2 7Y (+4 —HA- 2)A-

+2)
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For =0, = =0 , =0, =0.

0?(L— 2 *H(0+4 ) = 16(1— 2 HO+4 -HQA-2)1- *?)
0x(1-2"H@ ) =< 16(1-2"H@ -HA-2)a- )

0< 16(1—2"YH @

—H@A-2)H)a- )

0= 16x4( —1D(@A- 2" @a-2)a- *2)
0< 64( -1)(@A-2"H 1-2)Y1- *2)

64 ( -D(1-2"1HY@a-2)1- *?) =

Hence Proved.
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