
ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Hafeez et al., 2025 | Page 240

OPTIMIZING CI/CD THROUGH AGILE-DEVOPS COLLABORATION

Hadia Hafeez*1, Muhammad Arif2, Hamza Zahid3, Muhammad Bilal Qureshi4

*1,2,3,4Department of Computer Science & IT, Superior University, 10 KM Lahore- Sargodha Rd, Sargodha,
Punjab 40100, Pakistan.

1hadiamehar09@gmail.com, 2md.arif@superior.edu.pk, 3hamzashaikhcan@gmail.com,
4bilalshah1728@gmail.com

DOI: https://doi.org/10.5281/zenodo.15010250

Abstract
In contemporary software development, Continuous Integration and Continuous
Deployment (CI/CD) play a crucial role in ensuring fast and reliable software
delivery. The integration of Agile methodologies with DevOps principles enhances
CI/CD performance by promoting teamwork, automation, and iterative
enhancements. This study explores the effects of Agile-DevOps integration on
CI/CD efficiency, evaluates key performance metrics, identifies challenges along
with possible solutions, and offers practical recommendations for development
teams. The results indicate that Agile-DevOps collaboration significantly improves
CI/CD pipeline efficiency by minimizing deployment time, enhancing software
quality, and boosting team productivity. Metrics such as deployment frequency,
lead time, and defect rates show notable advancements. Despite these benefits,
challenges like cultural barriers, tool compatibility issues, and security risks
remain. To address these concerns, a theoretical framework for Agile-DevOps
integration is proposed to optimize CI/CD workflows. The study concludes that
organizations leveraging Agile-DevOps collaboration can enhance software
delivery by implementing automation, continuous feedback mechanisms, and
effective change management practices.

Keywords
Agile-DevOps integration, CI/CD
pipeline, software development,
automation.

Article History
Received on 05 February 2025
Accepted on 05 March 2025
Published on 12 March 2025

Copyright @Author
Corresponding Author: *

INTRODUCTION
Over the past two decades, there has been increasing
interest in the concept of "smart" innovations,
spanning diverse areas such as Smart Aging and
Smart Z-wave home monitoring, as outlined by Alter
(2019) in his detailed review of smart technologies.
This special issue adopted a more holistic perspective,
focusing on 'smart working, living and organizing' by
integrating various smart initiatives to achieve
broader objectives. Some studies have specifically
examined the elements of smart working and smart
organizing in the context of the DevOps approach to
software development (Hemon et al., 2020). Version
One (2018) estimated that over 90% of companies
now adopt agile methodologies for software

development. These approaches aim to strengthen
collaboration between customers and developers,
ensuring the software meets market needs while
enabling faster release cycles. However, despite the
accelerated development process, a bottleneck has
arisen due to misalignment between the
Development (Dev) and Operations (Ops) teams.
The Operations team, which manages software
releases, often operates independently of the
development process, resulting in significant delays
in delivering software to customers. To overcome
this challenge, Debois introduced the concept of
DevOps, advocating for a closer integration of the

mailto:hadiamehar09@gmail.com
mailto:md.arif@superior.edu.pk
mailto:hamzashaikhcan@gmail.com
mailto:bilalshah1728@gmail.com
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Hafeez et al., 2025 | Page 241

Dev and Ops functions (Dhal et al., 2022 ; Brunnert
et al., 2015).
Companies have increasingly adopted the DevOps
approach. Several authors have examined the
challenges involved in transitioning from traditional
waterfall methods to agile practices, followed by
continuous integration and continuous deployment
(Holmstrom Olsson et al., 2012). There is
considerable variation in how extensively companies
implement continuous integration (CI) and
continuous deployment (CD) practices (Dixit &
Jangid, 2024; Stahl & Bosch, 2014). These activities
are fundamental to DevOps. Since DevOps emerged
from practical application, there has been relatively
little focus on its conceptual or theoretical
foundations. Numerous definitions of DevOps exist,
with some aspects being well-established and familiar,
while others are more recent developments (Jagdish,
2024; Huttermann, 2012). The primary innovation
of DevOps lies in merging two traditionally distinct
organizational groups: Development and Operations.
Historically, the separation between these functions
led to isolated silos, resulting in significant
inefficiencies in software delivery. By integrating
Development and Operations, DevOps has
introduced new collaboration dynamics among roles
such as Developers, Architects, Scrum Masters,
Product Owners, Release Engineers and Testers.
These collaborative patterns diverge from those
traditionally observed in Scrum practices, such as
Daily Standups, Backlog Grooming and Sprint
Reviews or Retrospectives. This analysis focused on
five essential roles within a DevOps framework—
Release Manager, Architect, Product Owner,
Department/Project Manager and Production
Engineer— emphasizing their key interactions with
other DevOps roles. It also identifies the skills
required for each role, distinguishing between 'hard'
and 'soft' skills (Sachin & Jagdish, 2024; Gallivan et
al., 2004; Robles, 2012; Wong et al., 2006). As
technologies and methodologies continue to evolve,
there is a growing expectation for employees to
regularly enhance and expand their skill sets (Goles
et al. 2009).
The DevOps methodology emphasized continuous
and effective collaboration between Development
and Operations teams to achieve seamless
integration and faster software delivery (Fitzgerald

and Stol, 2017). It promotes the creation of
crossfunctional teams where members are expected
to anticipate and understand one another's
responsibilities. For instance, developers must
consider the real-world production environments
where their code will be deployed, while Operations
teams need to align their workflows with the
methods developers use to create, test and package
code for release. A crucial component of DevOps is
the increased use of test automation (Lwakatare et al.,
2015), which helps streamline and optimize the
entire deployment process. As Wettinger et al. (2014)
highlighted, automation plays a vital role in fostering
efficient collaboration and ensuring tight integration
between development and operations. Humble and
Molesky (2011) outlined four core DevOps values:
Culture, Automation, Measurement, and Sharing.
Similarly, Kim et al. (2016), in the DevOps
Handbook, emphasized the significance of culture,
advocating for “a high-trust culture where
departments collaborate effectively, work is
transparently prioritized, and systems have enough
flexibility to ensure high-priority tasks are completed
swiftly.”
The growing adoption of continuous integration,
continuous delivery, and DevOps practices highlights
the need for a close connection between software
development, its physical implementation, and the
supporting infrastructure. This is reflected in the
idea of treating infrastructure as code. In the past,
operations engineers manually configured hardware
and software systems. However, with the growing
scale and complexity of modern infrastructures, there
has been a growing shift toward automating the
scripts used for system configuration and
management. In today’s large-scale server farms,
often comprising thousands of machines, challenges
such as configuration drift or unauthorized changes
can result in significant disruptions and expensive
downtime (Morris, 2020).

1.1. Being smarter with DevOps
Alter (2019) defines smartness in socio-technical
systems as the capacity of a purposefully designed
entity to perform and control functions that yield
directly observable results for people through
automated information processing, interpretation,
and learning. Applying this definition to DevOps

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Hafeez et al., 2025 | Page 242

reveals that it was intentionally created to bridge the
gap between Development and Operations, thereby
fulfilling the purposefully designed aspect. DevOps
seeks to control the interaction between these
traditionally separate functions, producing
measurable outcomes assessed by cross-functional
teams via tools like sprint burndown charts.
Automation plays a critical role, with continuous
integration builds triggered by code commits and
automated testing conducted with specialized tools.
Furthermore, the display of information, such as
indicators for build status, enhances visibility in
DevOps environments. Lastly, as smartness is
context-dependent, DevOps teams leverage context-
specific information to ensure effective
communication and collaboration between
Development and Operations.
A SWOT analysis, as illustrated in Figure 1, is a
widely used framework for assessing both the
internal and external environments of an
organization to support decision-making. This tool

utilizes a diagnostic approach to pinpoint critical
factors that contribute to the success or failure of a
strategy, plan, or product. Additionally, conducting a
SWOT analysis can help identify potential
weaknesses within a business that may hinder
progress or provide competitors with an advantage if
not addressed (Lee et al., 2021). Commonly applied
in strategic planning, SWOT categorizes influential
factors into four distinct groups: strengths,
weaknesses, opportunities, and threats. The strengths
and weaknesses focus on evaluating an organization's
internal environment, whereas opportunities and
threats analyze the external environment of the
system. These internal and external variables, which
represent key influences within and outside the
system, are among the most crucial considerations.
Consequently, the SWOT analysis serves as a
diagnostic tool to determine the essential elements
that impact the effectiveness of a strategy or system
(Elavarasan et al., 2020).

Fig.1. The SWOT Structure
1.2. Roles, skills and competencies of IT jobs in
transition to DevOps
1.2.1. Roles
There are five key roles of interest:
1) Product Owner
2) Manager
3) Architect

4) Production Engineer, who conducts testing as part
of the Operations team (notably, developers also
perform testing in a DevOps environment)
5) Release Manager.
The Product Owner (PO) role is crucial in an agile
environment using Scrum. POs serve a dual purpose,
acting as advocates for client needs while also
fulfilling an operational function that connects

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Hafeez et al., 2025 | Page 243

business objectives to project management. They are
tasked with maximizing the value generated by
development teams. To be effective, POs require
autonomy, and their decisions should be honored by
all stakeholders involved (Coyle et al., 2015). There
is debate over whether Product Owners (POs) can
function as project managers (PMs). While POs
manage the Product Backlog, the Scrum guide
emphasizes that Scrum Teams are self-organizing and
cross-functional, avoiding external direction or
traditional PM roles. Consequently, POs focus more
on business ownership than conventional project
management (Schwaber and Sutherland 2011).
While Product Owners (POs) are theoretically
managers focused on business ownership rather than
traditional project management, they may also
perform PM duties, with some studies merging the
PO and Scrum Master roles to define their
competencies (Oomen et al. 2017).
The role of Manager (Department & Project
Manager) is crucial and has various definitions in the
literature. We define a manager as an individual
responsible for managing both tangible and
intangible resources to achieve a specific goal.
Managers can act as project leaders, team leaders, or
both, often due to hierarchical structures that
combine these roles. Other roles, like Scrum Masters,
may not always be present or are sometimes fulfilled
by individuals in more traditional positions, such as
developers or PMs. Team Managers encompass
various professions, including development or
operational team leaders and qualification-
integration managers. Project Managers oversee an
IT project from inception to delivery, aiming to
achieve optimal results that meet customer
requirements for quality, performance, cost, time
and security (Coyle et al., 2015).
The role of the architect (AR) is evolving, with
architects often developing a range of skills, whether
they focus on technical, software-application, or
functional aspects. On the Operations side,
Production Engineers (PEs) or production
integrators and testers are tasked with overseeing
production, operations, incident monitoring, and
user support. PEs contribute to creating architectural
documentation and application development while
providing expertise and assistance in resolving
incidents. Additionally, the Release Manager (RM)

plays a crucial role in ensuring project success by
managing deployment processes, tracking different
versions, and coordinating between development,
testing, and deployment teams. Within the
organization, the RM's role aligns with that of a PM
Implementation, which is vital, although its scope is
sometimes questioned within the DevOps
framework (Hemon et al., 2020).

1.2.2. Skills and competencies
Gallivan et al. (2004) emphasized the extensive
research history on IT skills, noting that soft, non-
technical skills can sometimes surpass technical skills
in importance. Wong et al. (2006) further
highlighted the value of attributes like adaptability,
flexibility, motivation and strong communication.
Non-technical skills include interpersonal abilities,
leadership, organization, independence, motivation
and creativity. Despite their significance, research
reveals that these skills are often underrepresented in
recruitment advertisements, which tend to prioritize
easily measurable "hard skills." This focus has
perpetuated a "recruitment gap" identified in earlier
studies. Such neglect is particularly problematic, as
some soft skills are crucial for the success of agile
software teams (Vivian et al., 2015).
Wiedemann and Schulz (2017) examined critical
capabilities of DevOps teams that could offer a
competitive edge, highlighting seven key areas such
as Change Readiness, Decision-Making and
Collaboration. However, their work lacked a clear
distinction between capabilities and skills, leaving
the specific skills driving competitive advantage
undefined. While they proposed strategies to
improve collaboration within DevOps teams, the
depth or extent of this collaboration was not
thoroughly explored. Similarly, Wiedemann (2017)
investigated emerging forms of collaboration but did
not delve into the level of collaboration within
DevOps teams.

1.2.3. Collaboration pattern
As organizations shift to DevOps, collaboration
patterns and skill sets will evolve, fostering teamwork
and cooperative behaviors essential for effective
collaboration. 10 Developers, while specialized, will
increasingly rely on diverse skill sets and become

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Hafeez et al., 2025 | Page 244

more versatile to meet the demands of faster
development cycles. This transition will promote
direct interaction among team members, enhancing
understanding of each other's roles beyond manager-
led communication. However, increased automation
may lead to fewer distinct roles within DevOps teams
(Nerkar and Paruchuri 2005).
Knowledge sharing and coordination are expected to
change with the adoption of DevOps (Humble and
Molesky 2011). DevOps emphasizes sharing practices,
establishing common ground, and bridging cultural
differences. While agile teams interact more
frequently than those in traditional plan-driven
approaches, these interactions are primarily among
development roles, which share similar cultural
values such as speed, creativity, and innovation. Agile
practices serve as coordination mechanisms that
promote knowledge sharing among team members
(Strode 2016). Nevertheless, while teamwork is vital
in agile settings, individualism and competition can
still exist. It can be hypothesized that development
and operations teams often work separately with
infrequent coordination, leading to a lack of shared
mental models. Conversely, in a DevOps
environment, even if some tasks are performed
independently, mental models and awareness of
respective constraints are more commonly shared
during collaborative activities. This aligned with
Bruns' (2013) concept of “working alone together” in
R&D teams, suggesting that even when separated
and team member’s work collaboratively.
Additionally, the frequency of joint activities with
operations teams significantly increases in a DevOps
framework.
This study aimed to investigate the synergistic
integration of Agile and DevOps methodologies,
focusing on how these frameworks can be effectively
combined to optimize Continuous Integration and
Continuous Deployment (CI/CD) pipelines. By
merging the iterative flexibility of Agile with the
automation and collaboration principles of DevOps,
this research seeks to enhance both the efficiency
and quality of software delivery processes.
Additionally, through a mixed-method research
approach, the study aimed to provide empirical
evidence that highlights the practical benefits of this
integration, particularly in terms of improved
deployment speed, stronger team collaboration and

increased customer satisfaction. Lastly, the research
aspired to bridge the gap between academic theory
and industry practices, offering actionable insights
and guidelines for technology companies. By
delivering practical strategies for enhancing CI/CD
processes through the Agile-DevOps synergy, the
study hoped to support technology companies in
achieving more streamlined and effective software
deployment.

2. LITERATURE REVIEW
Leite et al. (2019) presented a talk titled “10+
Deploys per Day: Dev and Ops Cooperation at
Flickr,” showcasing how collaboration between
development (Dev) and operations (Ops) teams
could enable more agile and scalable software
development. Their innovative approach involved
closely integrating Dev and Ops to achieve multiple
software deployments—often exceeding ten releases
per day—while maintaining safety and efficiency. This
concept marked a significant shift in software
development practices and its ongoing evolution.
They later coined the term DevOps, short for
Development and Operations and organized the first
DevOps Day event. Despite being a central topic of
discussion for over a decade, the DevOps movement
still lacks a singular, universally accepted definition.
According to Wiedemann et al. (2019), the absence
of a singular, standardized definition for DevOps
may be intentional, allowing each team to adopt a
version that best aligns with its specific needs.
Nonetheless, various authors have proposed
definitions, including Leite et al. (2019) defined
DevOps as “a collaborative and multidisciplinary
effort within an organization aimed at automating
the continuous delivery of new software versions
while maintaining their accuracy and reliability.”
Other perspectives view DevOps as a combination of
values, principles, methodologies, practices and tools.
Further widely recognized definitions are also
available.
Effective project execution depends heavily on the
management approach used. While the waterfall
model follows a linear, event-based sequence, the
iterative model develops software in stages, refining
until it meets desired outcomes (Larman and Basili,
2003). DevOps bridged development and operations,
fostering collaboration across the software lifecycle to

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Hafeez et al., 2025 | Page 245

ensure agile, stable and frequent releases. More than
a technical strategy, DevOps addressed
organizational and human challenges, promoting
teamwork and efficient delivery. Rajapakse et al.
(2022) highlighted DevOps as a widely adopted
approach, known for accelerating deployment rates.
Continuous Integration involves developers
frequently merging their tested code into the main
project, typically once a day. Continuous Delivery
ensures the software is 13 always in a deployable state,
allowing releases to be made at any time, with each
change generating a release candidate that can be
evaluated. In this approach, a team member with the
necessary authority decides when and which
candidate to release manually. Continuous
Deployment, on the other hand, automatically
releases every change to production without
requiring team intervention (Stahl et al., 2017).
According to Lwakatare et al. (2016), DevOps
represented an evolution of Agile development,
shaped gradually through practical implementation
experiences. While Agile primarily focuses on the
software development process itself, DevOps extends
this by involving the development team in both the
deployment and operational phases of the software,
even while still in development. This illustrated how
DevOps processes are integrated within Agile
practices.
As noted in (Faustino et al., 2020), DevOps culture
can support incident management for deliverable
products, enabling continuous monitoring of Agile
development teams by integrating deployment with
operational monitoring through the DevOps
framework. This integration enhanced stability
within the Agile cycle; while Agile emphasized
productivity in deliverables from a technical ICT
perspective, DevOps focuses on assessing the
effectiveness of outputs throughout development
cycles. This key integration is expected to contribute
to qualitative advancements in Software Engineering.
From study discussion, it is evident that Agile
methodologies provide the foundational structure
for DevOps (Hemon et al., 2020). Combining these
methodologies enhances the intelligence of the
information system generated within work cycles,
involving a variety of roles such as Developers,
System Architects, Product Owners, Release
Engineers, and Testers. This approach boosts

collaboration by incorporating professionals beyond
traditional roles—such as those seen in SCRUM
within Agile— thereby fostering cross-functional
teams within the DevOps framework (Dornenburg,
2018).
When development teams using Agile methodologies
collaborate closely with operations teams as
promoted by DevOps, the software release process is
typically accelerated, with studies (Cespedes et al.,
2020) showing gains not only in speed but also in
software quality, specifically in reliability and
maintainability. Consequently, the final product
aligned with key project objectives across
development (Agile) and 14 deployment and testing
(DevOps) stages. However, while DevOps bridged
the gap between Developers and Operators, it lacks a
straightforward roadmap or standardized approach
for implementation within organizations (Nybom et
al., 2016), leaving companies responsible for setting
their standards and metrics. This reliance on
organizational and team maturity can complicate the
definition of specific integration processes within a
DevOps framework.
The joint adoption of Agile and DevOps allowed
organizations to manage the growing complexity of
customer requirements and requests more effectively.
It promoted a collaborative and Agile framework
that supersedes traditional waterfall models and the
isolation of development and operations teams. This
study investigated the advantages of integrating both
methodologies through a qualitative approach that
includes twelve case studies from international
software engineering firms. Thematic analysis is used
to identify the benefits of this combined adoption.
The findings reveal twelve key advantages, including
process automation, enhanced communication
between teams and reduced time to market due to
integrated processes and shorter software delivery
cycles. Although Agile and DevOps target different
goals and challenges, when effectively combined and
aligned, they can provide significant benefits to
organizations. This study's novelty lies in
systematically outlining these benefits from various
perspectives within the software engineering business
landscape (Almeida et al., 2022).
Galup et al. (2020) described that implementation of
DevOps faced several challenges and concerns that
can hinder its adoption, such as resistance to change,

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Hafeez et al., 2025 | Page 246

organizational vision and legacy systems. Issues like
the misuse of the term, unclear guidelines and the
absence of a definitive definition contribute to the
confusion surrounding the application of DevOps
principles. These principles suggested that
development and operations teams previously
operated independently with minimal understanding
of each other's roles; however, the extent of this
knowledge gap is often not as significant as DevOps
assumes. While better collaboration between teams
can enhance the overall software development
process, it does not imply that DevOps teams lacked
cooperation in the past. Additionally, a notable
concern is that the rate of DevOps adoption remains
relatively low.
The collaborative aspects of Agile and DevOps, as
highlighted in the research by Fernandez-Diego et al.
(2020), played a crucial role in improving software
quality and speeding up development cycles. This
combination harnesses Agile’s flexibility and
customer-centric approach alongside DevOps’ focus
on rapid delivery, thereby streamlining the
development process. As a result, there is a
noticeable decrease in the time to market for
software products. The literature suggests a direct
link between this integration and the essential
principles of effective Continuous
Integration/Continuous Delivery (CI/CD),
including rapid and reliable testing and deployment,
which are fundamental to DevOps and reinforced by
Agile methodologies.
The literature reviewed highlighted that the
integration of Agile and DevOps offers numerous
advantages for the success of Continuous
Integration/Continuous Delivery (CI/CD) practices.
This synergy not only improves technical processes
but also positively impacts the cultural and
operational dynamics of software development teams.
However, it is important to note the necessity for
ongoing adaptation and evolution of this integration
model to keep up with technological changes and
shifting market needs. Future research could benefit
from a more in-depth analysis of empirical data
related to CI/CD outcomes following the integration
of Agile and DevOps. Furthermore, longitudinal
studies (Theurich et al., 2023) examining the long-
term effects of this integration on organizational

efficiency and software quality would provide
valuable insights into this evolving area.
3. METHODOLOGY
3.1. Research Objective and Research Questions
The primary research objective was to understand
how teams collaborate effectively and what skills are
essential for optimizing Continuous
Integration/Continuous Delivery (CI/CD) through
Agile DevOps collaboration.
This objective was broken down into the following
research questions:
 RQ1: What skills are necessary for effective
collaboration in teams working within an Agile
DevOps environment?
 RQ2: How do the skills and collaboration patterns
differ among teams operating at various levels of
CI/CD automation?
The first question focuses on analyzing collaboration
and skill requirements at an individual level, while
the second explores team-level dynamics in different
automation contexts.

3.2. Case Study Approach
This study utilized a case study methodology,
incorporating interviews, observations, and
document analysis to examine Agile DevOps
practices and the optimization of CI/CD processes.
A case study is an empirical research approach that
explores a current phenomenon within its real-world
context, especially when the distinction between the
phenomenon and its context is ambiguous (Yin,
1994).

3.3. Study Context
The research was conducted within a large European
IT services firm employing approximately 15,000 IT
staff, known for its structured hierarchy and a
bureaucratic culture that presents challenges to
agility (Strode et al., 2009). The company’s
Information Systems Division consists of
development and operations functions, which have
adopted Agile methodologies for over 15 years and
have integrated DevOps for eight years, positioning
the company as an early adopter of the DevOps
model.

3.4. Teams and Job Roles

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Hafeez et al., 2025 | Page 247

The study examined 12 application development
teams characterized by the use of Agile engineering
practices and varying levels of CI/CD automation.
Analyzed five job roles within these teams to
understand their collaboration patterns and skill
requirements (Runeson and Host, 2008). Differences
in infrastructure and test automation methods were
noted across the teams. The transition to DevOps
and increased automation are hypothesized to
influence the necessary human skills and
collaboration patterns within teams.

3.5. Data Collection and Analysis
Data collection spanned 12 months, involving 59
individual, in-depth interviews lasting approximately
90 minutes each. These were conducted face-to-face,
recorded, transcribed and coded. Data analysis
followed Braun and Clarke's (2006) six-step thematic
analysis process to identify significant themes. The
study emphasized the "keyness" rule, which
prioritized the relevance of a theme to the research
question over frequency. Thematic prevalence was
assessed both at the data and individual levels.
Reliability was ensured through Lincoln and Guba's
(1985) trustworthiness criteria and findings were
validated by sharing interpretations with participants.

3.6. Inductive Research Study Phase
The inductive research comprised two phases:

Phase 1:
A literature review helped define criteria for selecting
12 sample teams.
Observations and interviews were conducted over 15
days with four teams to align practical observations
with literature-based criteria, such as team size, level
of automation and outsourcing extent. Interviews
with 12 strategists from Information Systems and
HR departments further supported sample validation.

Phase 2:
1. Team Size:

Teams were categorized as small (≤14 members) or
large (>15 members).

2. Outsourcing Policy:
Projects were assessed based on outsourcing nature,
comparing fixed-price contract activities against

projects without outsourcing or those using technical
assistance contracts.

3. Automation Level:
Automation levels in development and operations
workflows were analyzed, referencing "infrastructure
as code".

3.7. Automation Level
 Automation Level 1 (Agile - Aut.1): Represented
the initial stage of automation compared to the
traditional V-model. Agile enables more frequent
releases but does not achieve full DevOps integration.
Development and Operations teams remain siloed
with minimal collaboration and no automated
release processes.
 Automation Level 2 (Continuous Integration -
Aut.2): Development and Operations synchronize
testing activities, including unit and non-regression
tests, aligning with code development and
maximizing test automation (Stahl and Bosch, 2014).
 Automation Level 3 (Continuous Delivery - Aut.3):
Teams collaboratively conduct integration, end-to-
end, performance and user acceptance tests, ideally
automating these processes. Greater automation
requires enhanced collaboration, facilitating
contextually relevant performance indicators (Chen,
2017).

3.8. Interpretation of Interviews
Phase 1 insights guided the interpretation of the 59
interviews in Phase 2. Interviewees identified primary
collaborators to assess collaboration scope,
minimizing bias by not probing about all potential
job roles. Collaboration enrichment was evaluated
through satisfaction or dissatisfaction feedback
during semi-structured interviews (Hemon et al.,
2018). Skills were explored by questioning the
necessary know-how and behavioral skills for
evolving roles. Findings were compared against hard
and soft skills defined by Maram et al. (2009) and
Robles (2012).

4. FINDINGS
4.1 Hard Skills and DevOps Maturity in the
Context of Optimizing CI/CD Through Agile
DevOps Collaboration
In the pursuit of optimizing CI/CD pipelines
through Agile DevOps collaboration, a detailed

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Hafeez et al., 2025 | Page 248

analysis of hard skills (HSk) becomes essential. The
findings from Maram et al. (2009), as reflected
through the experiences of 59 interviewees, highlight
key aspects relevant to CI/CD pipeline enhancement:
4.1.1 Importance of Technical Skills Regardless of
the Level of Automation
A significant insight from the study is that hard
technical skills remain vital across all automation
levels in a CI/CD context. For product engineers
(PE), the emphasis on technical skills such as Testing
(TST) and Quality, Security (QSY) is pronounced.
This focus aligned with the necessity for continuous
testing and quality assurance within CI/CD
workflows, where automated tools are pivotal. PEs
noted that testing automation and orchestration
tools are crucial to maintain reliable, repeatable and
swift deployment processes. Statements from
engineers highlighted the challenge and importance
of creating effective automation for test and delivery
processes, ensuring code is properly versioned and
tested as part of routine operations. This insight
supported the idea that optimizing CI/CD requires
robust technical capabilities that cater to automation
and quality standards.

4.1.2 Evolution of Management (MNG) Skills with
Automation
DevOps project managers (DPM) demonstrated a
balance between managerial (MNG) and technical
skills like software engineering (SWE). However, the
study showed that higher levels of automation reduce
the emphasis on traditional managerial skills. As
automation in CI/CD grows, teams tend to self-
organize, reducing the necessity for direct
management intervention. This self-sufficiency is
facilitated by the Agile and DevOps emphasis on
autonomy and collaboration, which supports more
streamlined and adaptive CI/CD practices.
DPMs recognized that their role shifts towards
enabling teams to self-manage and collaborate
effectively, which is essential in optimizing CI/CD.
One DPM highlighted that enabling team autonomy
and encouraging individuals to take initiative is
crucial for successful project delivery. At higher
automation levels, management becomes less about
control and more about supporting seamless
integration and collaborative culture, which aligns
with the principles of Agile DevOps.

4.1.3 Negotiation (NEG) Skills and Team
Alignment in High Automation Levels
Negotiation skills (NEG) appeared less significant as
automation increases. This trend could be attributed
to the Agile DevOps practice of continuous
collaboration, fostering natural alignment among
CI/CD stakeholders. In lower automation levels,
negotiation is necessary to balance differing team
priorities. However, as automation enhances and the
DevOps culture of frequent interaction takes hold,
shared understanding and alignment become more
intuitive, reducing the emphasis on formal
negotiation.
An interviewee mentioned the importance of
understanding the different roles within a team to
improve collaboration, especially in integrated Agile
DevOps teams working on CI/CD pipelines. When
teams are aligned in their understanding of
responsibilities and goals, they work more cohesively,
which directly supports efficient CI/CD pipeline
execution. The DevOps approach inherently
promotes this cross-functional awareness, thus
optimizing CI/CD through stronger team
integration and minimized friction.
These findings indicated that the successful
optimization of CI/CD through Agile DevOps
collaboration hinges on the technical skills to
manage automated processes, evolving management
practices to foster self-organized teams and shared
alignment among team members to ensure fluid
operations.

4.2 Perceptions of Soft Skills in the Context of
CI/CD Optimization Through Agile DevOps
Collaboration
The codification of interviewees' perceptions of soft
skills (SSk) illuminated key changes as automation
levels evolve, aligning with the optimization of
CI/CD (Continuous Integration/Continuous
Deployment) processes in Agile DevOps
environments. Drawing from Robles’ (2012) groups
of soft skills, certain insights emerged:

4.2.1 Core Representations of Communication
(COM) Skills
Communication skills (COM) are foundational to
successful Agile DevOps collaboration, essential for

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Hafeez et al., 2025 | Page 249

facilitating CI/CD practices. At every level of
automation, interviewees highlighted the importance
of clear, effective communication to foster seamless
integration and deployment. For instance, a Release
Manager (RM, Aut.1) emphasized, “You have to
know how to communicate,” underlining
communication as a bridge between development
and operations. This view was reinforced as
automation increased; at Aut.3, communication
evolved beyond basic information sharing to
comprehensive team-wide understanding, enhancing
CI/CD by ensuring all stakeholders grasp
deployment stages and integrate feedback efficiently.

4.2.2 Interpersonal Skills (IPS) in Enhancing
Collaborative Efficiency
Interpersonal skills (IPS), encompassing empathy,
patience and sociability, were repeatedly noted across
all automation levels. A Product Owner (PO, Aut.1)
mentioned the necessity of balancing stakeholder
demands and maintaining harmony within the
CI/CD pipeline. By Aut.3, these skills facilitated
smoother cross-functional collaboration, critical for
reducing cycle time and preventing bottlenecks in
CI/CD workflows. An interviewee (DPM, Aut.3)
highlighted the need for quick relational assessments
to build strong working relationships, an essential
asset for maintaining momentum in iterative
deployment cycles.
4.2.3 Flexibility (FLX) as a Driver of Continuous
Improvement
Flexibility (FLX), the capacity to adapt and learn, is
integral to CI/CD processed that demand rapid
iteration and continuous learning. At lower
automation levels (Aut.1), adaptability was associated
with basic adjustments to new tools and processes.
However, by Aut.3, flexibility was described in
broader terms: embracing change, learning from
mistakes and adjusting swiftly to new CI/CD
protocols. A DPM (Aut.3) noted, “Everything
evolved so quickly, it is better to know how to learn,”
illustrating that in high-automation environments,
the ability to pivot and absorb new strategies ensures
smoother and faster deployments.

4.2.4 Teamwork (TWK) as the Backbone of
DevOps Culture

Teamwork (TWK) emerged as a cornerstone of Agile
DevOps collaboration and CI/CD efficiency. The
DevOps philosophy inherently breaks down silos
between development (Dev) and operations (Ops),
fostering collaborative environments where shared
responsibility accelerates CI/CD processes. At Aut.1,
team members were encouraged to understand each
other's progress and align efforts. By Aut.3,
collaboration reached a maturity where teams
operated as unified entities, minimizing delays and
enhancing deployment frequency. An Ops
professional (RM, Aut.2) emphasized, “We do not
ask for technical expertise anymore…we want the
problem solved by a community.”

4.2.5 Responsibility (RES) in Maintaining CI/CD
Accountability
Responsibility (RES) skills, encompassing
conscientiousness and reliability, were crucial for
maintaining high standards in CI/CD practices. At
early stages of automation, interviewees stressed the
importance of individual commitment to getting
tasks done. By Aut.3, the collective sense of
accountability strengthened, driving teams to take
ownership of their code, deployments, and problem-
solving. A DPM (Aut.3) mentioned, “If they are self-
organized, they must get in deep…when they fail,
they repair,” underscoring that high-functioning
CI/CD pipelines depend on individuals who ensure
continuous delivery without compromising quality.
The transition from basic to high automation levels
in CI/CD processes through Agile DevOps
collaboration highlighted evolving soft skill
representations. Communication, interpersonal skills,
flexibility, teamwork and responsibility are
continuously adapted to meet the demands of more
advanced CI/CD environments. As automation
increases, the collaborative culture strengthened by
Agile principles emphasizes skills that support
seamless integration, rapid iteration, and efficient
feedback loops, ultimately optimizing CI/CD
workflows.

4.3 Roles and Collaboration Analysis
The analysis of collaboration roles within Agile
DevOps environments reveals significant insights
into the dynamics of cross-functional teamwork as
influenced by Continuous Integration/Continuous

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Hafeez et al., 2025 | Page 250

Deployment (CI/CD) practices. The results
demonstrated that the evolution from traditional
development models to automated, agile DevOps
settings reshapes the collaboration patterns across
different roles, enhancing both their frequency and
quality.

Cross-Functional Collaborations and CI/CD
Automation Levels:
Interview data indicated that higher levels of
automation in CI/CD practices are directly
correlated with increased collaboration between
development (Dev) and operations (Ops) teams.

Specifically, Table 4.1. highlighted that in
automation level 1, cross-functional DevOps
collaborations were fewer (20) compared to internal
Dev or Ops collaborations (31). However, as teams
progressed to automation level 3, these
crossfunctional interactions became nearly equal (31
vs. 32), signifying balanced collaboration as the
CI/CD automation matured. This progression
indicates that the more automated the environment,
the more integrated and balanced cross-functional
interactions become, emphasizing the collaborative
nature of DevOps for optimizing CI/CD processes.

Table 4.1. Collaboration analysis by level of automation

Automation 1 Automation 2 Automation 3

Ops Dev Ops Dev Ops
Dev 11 23 11 25 12
Ops 10 15 6 19 7

Key Roles and Their Collaboration Patterns: Table
4.2. presented a detailed breakdown of
collaborations by role, revealing both commonalities
and unique aspects in how different functions
interact:

 Release Manager (RM): Positioned centrally
in collaborative structures, RMs work closely
with project managers and production
engineers to prioritize tasks and ensure
project success. Their role in CI/CD-focused
teams involves facilitating regular meetings
and common work plans to maintain
seamless progress. This reflected the critical
nature of RMs in orchestrating the
synchronization of deployment pipelines,
ensuring smooth transitions between
development and operations and enhancing
CI/CD reliability.

 Product Owner (PO): POs were noted for
their interactions with development project
managers (DPMs) and developers,
particularly during sprint reviews and demos
that are integral to agile methodologies. POs
highlighted that the transition to higher
CI/CD automation levels fostered an
integrated team approach, facilitating closer
interaction with marketing and technical
teams. This cross-functional engagement is

vital for continuous feedback loops, enabling
swift adjustments to CI/CD pipelines based
on evolving product requirements and user
feedback.

 Architect (AR): Architects frequently
collaborate with POs, DPMs, and
development teams to align on project goals
and technical feasibilities. The shift toward
DevOps, combined with agile practices,
enhances these collaborations by promoting
shared decision-making, thus optimizing
architectural adjustments within CI/CD
processes. This collaboration is essential for
maintaining a consistent infrastructure that
supports frequent deployments without
compromising system integrity.

 Production Engineer (PE): PEs cited
substantial collaboration with developers,
aligning with the core philosophy of DevOps
that blurs traditional operational boundaries.
PEs play a pivotal role in ensuring CI/CD
systems are operational, collaborating on
shared responsibilities for documentation
and process management. As CI/CD
automation increases, PEs and developers
often function as a unified DevOps team,
fostering a culture of shared accountability
and continuous improvement.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Hafeez et al., 2025 | Page 251

 Department and Project Managers (DPM):
DPMs manage comprehensive collaboration
networks, involving POs, RMs, and
functional architects. They are integral to
coordinating budgets, tracking progress and
prioritizing development efforts, all of which

are crucial for optimizing CI/CD pipelines.
26 Agile DevOps practices redefine DPM
roles to incorporate elements of Scrum
Master Responsibilities, thereby streamlining
planning and project management within
CI/CD frameworks.

Table 4.2. Main collaborations reported by each role
PO
(N=12
)

DPM
(N=13
)

AR
(N=11
)

PE
(N=12
)

RM
(N=11
)

O
PS

M
ai
n

C
ol
la
bo
ra
tio

ns
ci
te
d

D
EV

Product Owner, N 3 13 11 11 10
Department & Project Manager,
N

10 13 11 12 11

Architect, N 3 1 1 4 2
ScrumMaster, N 3
Developer, N 9 8 8 12 4
DevOps animator, N 1
Technical expert, N 1 1 3 2
Quality expert, N 1
Multiple collaborators, N 2 1
Qualifier, N 1
Production Engineer, N 1 4 2 1 8
Administrator Infrastructu
re Director, N

1

System Engineer, N 1
Operators, N 3 2 5 4
Release Manager, N 2 1 6 6

Improvements in Collaboration Quality:
The shift to agile DevOps practices, supported by
CI/CD, has led to notable improvements in the
quality of collaborations. Interviewees attributed
these enhancements to the structured setup of daily
meetings, sprint reviews, and the adoption of
collaborative tools like Mingle. While these
formalized interactions contribute to synchronization
and proactive problem-solving, they also pose
potential challenges such as meeting fatigue, which
requires strategic management to sustain productivity
and morale.

The Role of Automation in Collaborative
Dynamics:
As automation advances from level 1 to level 3,
teams experience an increase in cross-functional
interactions that become as significant as intra-
functional collaborations. This shift underscores that

optimizing CI/CD through agile DevOps is as much
about fostering seamless collaboration as it is about
implementing robust technical practices. The
evolving role of project participants—from architects
and engineers to product owners and managers—
demonstrates that CI/CD optimization relies heavily
on integrated communication and shared
responsibilities.
Optimizing CI/CD through agile DevOps
collaboration is characterized by a balance between
cross-functional and intra-functional teamwork, with
increasing automation driving greater cohesion.
Roles such as RMs, POs, and PEs adapt to new
collaborative dynamics, fostering a culture where
interaction and mutual support enhance deployment
speed and reliability. Agile practices, paired with
CI/CD processes, enable continuous improvement
through strengthened partnerships, ultimately

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Hafeez et al., 2025 | Page 252

contributing to efficient software delivery and
operational excellence.

5. CONCLUSION
In this study, it was explored how the progression
towards DevOps enhances Continuous
Integration/Continuous Delivery (CI/CD) through
improved collaboration and smartness. It was
identified three distinct stages that underpin the
transition from Agile practices to DevOps: Agile
(Aut.1), Continuous Integration (Aut.2) and
Continuous Delivery (Aut.3). Each stage emphasized
the significance of skills and collaboration patterns
essential for optimizing CI/CD processes. Study
findings indicated a significant shift in the required
soft skills within software teams and their
collaborative dynamics. As teams advance to
Automation Level 3, collaboration between
Development (Dev) and Operations (Ops) becomes
more balanced, reflecting richer interactions and
deeper understandings among team members. Study
highlighted the critical role of responsibilities and
communication skills at Automation Level 1,
aligning with Agile methodologies, which naturally
encourage these competencies. Interestingly,
flexibility and teamwork skills were less emphasized
in interviews, suggesting potential areas for further
development in CI/CD practices. As teams progress
to Automation Level 2, collaborations expand, but
observed a decrease in the emphasis on
responsibility-related skills at Automation Level 3. By
applying Alter’s (2018) criteria for smartness, it was
demonstrated that adopting DevOps fosters
automation and enhances flexibility, resulting in
faster and more efficient delivery cycles. Therefore,
DevOps not only contributed to greater smartness in
the Information System function but also serves as a
critical enabler of optimized CI/CD. Despite the
existence of maturity models in Software
Engineering, a dedicated model for analyzing the
transition from Agile to DevOps, particularly
regarding CI/CD optimization, is still lacking.
Existing commercial models, such as the simplified
DevOps Maturity Model from Atlassian-GitLab, tend
to focus more on technical aspects without offering
substantial guidance on managing this transition or
achieving full adoption of DevOps practices. Overall,
this research sheds light on the practical implications

of transitioning to DevOps for optimizing CI/CD
processes and suggests a simple yet effective
framework for visualizing this path. While findings
contributed valuable insights and based on an
exploratory embedded case study within a single 32
large organization. Consequently, further research
across diverse contexts is necessary to validate and
expand upon these results. In addition, study
methodology did not fully capture the diversity of
collaborations among team members. Future studies
that employ observational methods to analyze
interactions and collaborative networks would
enhance our understanding of the factors
influencing CI/CD optimization in a DevOps
context. Finally, it would be beneficial to delve
deeper into identifying elements that may limit the
smartness of DevOps initiatives, as these factors may
not always be direct opposites of those contributing
to enhanced smartness.

6. REFERENCES
Abuamoud, I., Lillywhite, J., Simonsen, J., & Al-Oun,

M. (2016). Factors influencing food security
in less popular tourists sites in Jordan's
Northern Badia. International Review of
Social Sciences and Humanities, 11(2), 20-36.

Almeida, F., Simões, J., & Lopes, S. (2022).
Exploring the benefits of combining DevOps
and agile. Future Internet, 14(2), 63.

Alter, S. (2018). Making sense of smart living,
working, and organizing enhanced by
supposedly smart objects and systems. In
Proceedings of the IFIP WG8.6 Working
Conference: Smart Working, Living and
Organizing (pp. 1–14). Presented at the IFIP
WG8.6 working conference: Smart working,
living and organizing, Portsmouth. UK:
Springer.

Alter, S. (2019). Making sense of smart living,
working, and organizing enhanced by
supposedly smart objects and systems. In
Smart Working, Living and Organising: IFIP
WG 8.6 International Conference on
Transfer and Diffusion of IT, TDIT 2018,
Portsmouth, UK, June 25, 2018,
Proceedings (pp. 247-260). Springer
International Publishing.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Hafeez et al., 2025 | Page 253

Ambler, S. W., & Lines, M. (2012). Disciplined agile
delivery: A practitioner’s guide to agile
software delivery in the enterprise.
Indianapolis, IN, USA: IBM Press.

Braun, V., & Clarke, V. (2006). Using thematic
analysis in psychology. Qualitative Research
in Psychology, 3(2), 77–101.

Brunnert, A., van Hoorn, A., Willnecker, F., Danciu,
A., Hasselbring, W., Heger, C., ... & Wert,
A. (2015). Performance-oriented DevOps: A
research agenda. arXiv preprint
arXiv:1508.04752.

Bruns, H. C. (2013). Working alone together:
Coordination in collaboration across
domains of expertise. Academy of
Management journal, 56(1), 62-83.

Céspedes, D., Angeleri, P., Melendez, K., & Dávila,
A. (2020). Software product quality in
DevOps contexts: A systematic literature
review. In Trends and Applications in
Software Engineering: Proceedings of the
8th International Conference on Software
Process Improvement (CIMPS 2019) (pp. 51-
64). Springer International Publishing.

Chen, L. (2017). Continuous delivery: Overcoming
adoption challenges. Journal of Systems and
Software, 128, 72–86.

Coyle, S., Conboy, K., & Acton, T. (2015). An
exploration of the relationship between
contribution behaviours and the decision
making process in agile teams.

Dhal, K., Karmokar, P., Chakravarthy, A. et al.
Vision-Based Guidance for Tracking
Multiple Dynamic Objects. J Intell Robot Syst
105, 66 (2022).
https://doi.org/10.1007/s10846-022-01657-
6

Dixit, S., & Jangid, J. (2024). Exploring Smart
Contracts and Artificial Intelligence in
FinTech. https://jisem-
journal.com/index.php/journal/article/view
/2208

Dörnenburg, E. (2018). The path to devops. IEEE
software, 35(5), 71-75. Faustino, J., Pereira,
R., Alturas, B., & Silva, M. M. D. (2020).
Agile information technology service
management with DevOps: An incident
management case study. International

Journal of Agile Systems and Management,
13(4), 339-389.

Easwaran, V., Orayj, K., Goruntla, N., Mekala, J. S.,
Bommireddy, B. R., Mopuri, B., ... &
Bandaru, V. (2025). Depression, anxiety,
and stress among HIV-positive pregnant
women during the COVID-19 pandemic: a
hospital-based cross-sectional study in
India. BMC Pregnancy and
Childbirth, 25(1), 134.

Elavarasan, R. M., Afridhis, S., Vijayaraghavan, R. R.,
Subramaniam, U., & Nurunnabi, M. (2020).
SWOT analysis: A framework for
comprehensive evaluation of drivers and
barriers for renewable energy development
in significant countries. Energy Reports, 6,
1838-1864.

Fernández-Diego, M., Méndez, E. R., González-
Ladrón-De-Guevara, F., Abrahão, S., &
Insfran, E. (2020). An update on effort
estimation in agile software development: A
systematic literature review. IEEE Access, 8,
166768-166800.

Fitzgerald, B., & Stol, K. J. (2017). Continuous
software engineering: A roadmap and
agenda. Journal of Systems and Software,
123, 176-189.

Gallivan, M. J., Truex III, D. P., & Kvasny, L. (2004).
Changing patterns in IT skill sets 1988- 2003:
a content analysis of classified advertising.
ACM SIGMIS Database: the DATABASE
for Advances in Information Systems, 35(3),
64-87.

Galup, S., Dattero, R., & Quan, J. (2020). What do
agile, lean, and ITIL mean to DevOps?.
Communications of the ACM, 63(10), 48-53.

Goles, T., Hawk, S., & Kaiser, K. M. (2009).
Information technology workforce skills:
The software and IT services provider
perspective. Information Systems
Outsourcing: Enduring Themes, Global
Challenges, and Process Opportunities, 105-
125.

Guimarães, Portugal. Rajapakse, R. N., Zahedi, M.,
Babar, M. A., & Shen, H. (2022).
Challenges and solutions when adopting
DevSecOps: A systematic review.

https://doi.org/10.1007/s10846-022-01657-6
https://doi.org/10.1007/s10846-022-01657-6
https://jisem-journal.com/index.php/journal/article/view/2208
https://jisem-journal.com/index.php/journal/article/view/2208
https://jisem-journal.com/index.php/journal/article/view/2208
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Hafeez et al., 2025 | Page 254

Information and software technology, 141,
106700.

Hemon, A., Lyonnet, B., Rowe, F., & Fitzgerald, B.
(2020). Fromagile to DevOps: Smart skills
and collaborations. Information Systems
Frontiers, 22(4), 927-945.

Hemon, A., Monnier-Senicourt, L., & Rowe, F.
(2018). Job satisfaction factors and risks
perception: an embedded case study of
DevOps and agile teams. In Proceedings of
the 39th International Conference on
Information Systems (ICIS), San Francisco,
CA, USA.

Holmström Olsson, H., Alahyari, H., & Bosch, J.
(2012). Climbing the" Stairway to Heaven"–
A Mulitiple-Case Study Exploring Barriers in
the Transition from Agile Development
towards Continuous Deployment of
Software. In 2012 38th EUROMICRO
Conference on Software Engineering and
Advanced Applications (SEAA) (pp. 392–
399). IEEE.

Hood, K., & Al-Oun, M. (2014). Changing
performance traditions and Bedouin identity
in the North Badiya, Jordan. Nomadic
Peoples, 18(2), 78-99.

Humble, J., & Molesky, J. (2011). Why enterprises
must adopt devops to enable continuous
delivery. Cutter IT Journal, 24(8), 6.

Hüttermann, M. (2012). Beginning devops for
developers. In DevOps for Developers (pp. 3-
13). Berkeley, CA: Apress.

Jagdish Jangid. (2023). Enhancing Security and
Efficiency in Wireless Mobile Networks
through Blockchain. International Journal
of Intelligent Systems and Applications in
Engineering, 11(4), 958–969. Retrieved
from
https://ijisae.org/index.php/IJISAE/article/
view/7309

Kim, G., Humble, J., Debois, P., Willis, J., &
Forsgren, N. (2021). The DevOps handbook:
Howto create world-class agility, reliability,
& security in technology organizations. It
Revolution.

Larman, C., & Basili, V. R. (2003). Iterative and
incremental developments. a brief history.
Computer, 36(6), 47-56.

Lee, J., Kim, I., Kim, H., & Kang, J. (2021). SWOT-
AHP analysis of the Korean satellite and
space industry: Strategy recommendations
for development. Technological Forecasting and
Social Change, 164, 120515.

Leite, L., Rocha, C., Kon, F., Milojicic, D., &
Meirelles, P. (2019). A survey of DevOps
concepts and challenges. ACM Computing
Surveys (CSUR), 52(6), 1-35.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic
inquiry. Beverly Hills: Sage Publications.

Lwakatare, L. E., Kuvaja, P., & Oivo, M. (2015).
Dimensions of devops. In International
Conference on Agile Software Development
(pp. 212–217). Helsinki, Finland: Springer.

Lwakatare, L. E., Kuvaja, P., & Oivo, M. (2016).
Relationship of devops to agile, lean and
continuous deployment: A multivocal
literature review study. In Product-Focused
Software Process Improvement: 17th
International Conference, PROFES 2016,
Trondheim, Norway, November 22-24, 2016,
Proceedings 17 (pp. 399-415). Springer
International Publishing.

Maram, M., Prabhakaran, P., Murthy, S., & Domala,
N. (2009). Sixteen roles performed by
software engineers in first one year. In 22nd
Conference on Software Engineering
Education and Training (pp. 212–215).
IEEE. Morris, K. (2020). Infrastructure as
code.

Nguyen, H. U., Trinh, T. X., Duong, K. H., & Tran,
V. H. (2018). Effectiveness of green
muscardine fungus Metarhizium anisopliae
and some insecticides on lesser coconut
weevil Diocalandra frumenti Fabricius
(Coleoptera: Curculionidae). CTU Journal
of Innovation and Sustainable Development,
(10), 1-7.

Nguyen, L., Trinh, X. T., Trinh, H., Tran, D. H., &
Nguyen, C. (2018). BWTaligner: a genome
short-read aligner. Vietnam Journal of
Science, Technology and Engineering, 60(2),
73-77.

Nybom, K., Smeds, J., & Porres, I. (2016). On the
impact of mixing responsibilities between
devs and ops. In Agile Processes, in Software
Engineering, and Extreme Programming:

https://ijisae.org/index.php/IJISAE/article/view/7309
https://ijisae.org/index.php/IJISAE/article/view/7309
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Hafeez et al., 2025 | Page 255

17th International Conference, XP 2016,
Edinburgh, UK, May 24-27, 2016,
Proceedings 17 (pp. 131-143). Springer
International Publishing.

Oliveira Martins, S. R. (2017). High Radicality of
product innovation and high flexibility and
high agility of system of manufacturing:
Towards the smart factories. Procedia
Manufacturing, 11, 1324– 1334.

Oomen, S., De Waal, B., Albertin, A., & Ravesteyn,
P. (2017). How can scrum be successful?
Competences of the scrum product owner.
In Proceedings of the 25th ECIS European
Conference on Information Systems (pp.
131–142).

O'Reilly Media. Nerkar, A., & Paruchuri, S. (2005).
Evolution of R&D capabilities: The role of
knowledge networks within a firm.
Management science, 51(5), 771-785.

Robles, M. M. (2012). Executive perceptions of the
top 10 soft skills needed in today’s
workplace. Business communication
quarterly, 75(4), 453-465.

Robles, M. M. (2012). Executive perceptions of the
top 10 soft skills needed in today’s
workplace. Business Communication
Quarterly, 75(4), 453–465.

Runeson, P., & Höst, M. (2008). Guidelines for
conducting and reporting case study research
in software engineering. Empirical Software
Engineering, 14(2), 131.

Sachin Dixit, & Jagdish Jangid. (2024).
Asynchronous SCIM Profile for Security
Event Tokens. Journal of Computational
Analysis and Applications (JoCAAA), 33(06),
1357–1371. Retrieved from
https://eudoxuspress.com/index.php/pub/a
rticle/view/1935

Sawyer, S., Ellers, S., Kakumanu, M. S., Bommireddy,
B., Pasgar, M., Susan-Kurian, D., ... & Jurdi,
A. A. (2025). Trial in progress for a
colorectal cancer detection blood test.
https://ascopubs.org/doi/10.1200/JCO.20
25.43.4_suppl.TPS306

Schwaber, K., & Sutherland, J. (2011). The scrum
guide. Scrum Alliance, 21. Stahl, D., &
Bosch, J. (2014). Modeling continuous

integration practice differences in industry
software development. Journal of Systems
and Software, 87, 48–59.

Ståhl, D., & Bosch, J. (2014). Modeling continuous
integration practice differences in industry
software development. Journal of Systems
and Software, 87, 48-59.

Stahl, D., Martensson, T., & Bosch, J. (2017,
August). Continuous practices and devops:
beyond the buzz, what does it all mean?. In
2017 43rd Euromicro Conference on
Software Engineering and Advanced
Applications (SEAA) (pp. 440-448). IEEE.

Strode, D. E. (2016). A dependency taxonomy for
agile software development projects.
Information Systems Frontiers, 18(1), 23- 46.

Strode, D. E., Huff, S. L., & Tretiakov, A. (2009).
The impact of organizational culture on agile
method use. In 42nd Hawaii International
Conference on System Sciences (HICSS) (pp.
1– 9).

Theurich, P., Witt, J., & Richter, S. (2023). Practices
and challenges of threat modelling in agile
environments. Informatik Spektrum, 46(4),
220-229.

Vivian, R., Tarmazdi, H., Falkner, K., Falkner, N., &
Szabo, C. (2015). The development of a
dashboard tool for visualising online
teamwork discussions. In IEEE/ACM 37th
IEEE International Conference on Software
Engineering (Vol. 2, pp. 380–388). IEEE.

Wettinger, J., Breitenbücher, U., & Leymann, F.
(2014). Standardsbased DevOps automation
and integration using TOSCA. In
Proceedings of the 2014 IEEE/ACM (pp.
59–68). Presented at the 7th International
Conference on Utility and Cloud
Computing, London, UK: IEEE Computer
Society.

Wiedemann, A. M., & Schulz, T. (2017). Key
Capabilities of DevOps Teams and their
Influence on Software Process Innovation: A
Resource-Based View. In Proceedings of
23rd ACIS Americas Conference on
Information Systems (pp. 1–10). Boston.

Wiedemann, A. M., & Schulz, T. (2017). Key
Capabilities of DevOps Teams and their
Influence on Software Process Innovation: A

https://eudoxuspress.com/index.php/pub/article/view/1935
https://eudoxuspress.com/index.php/pub/article/view/1935
https://ascopubs.org/doi/10.1200/JCO.2025.43.4_suppl.TPS306
https://ascopubs.org/doi/10.1200/JCO.2025.43.4_suppl.TPS306
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Hafeez et al., 2025 | Page 256

Resource-Based View. In Proceedings of
23rd ACIS Americas Conference on
Information Systems (pp. 1–10). Boston.

Wiedemann, A., Forsgren, N., Wiesche, M., Gewald,
H., & Krcmar, H. (2019). Research for
practice: the DevOps phenomenon.
Communications of the ACM, 62(8), 44-49.

Wong, S., von Hellens, L., & Orr, J. (2006). Non-
technical skills and personal attributes: The
soft skills matter Most. In Proceedings of the
6th Australiasian Women in Computing
Workshop (pp. 27–33). Brisbane, Australia.

Yin, R. K. (1994). Case StudyResearch: Design and
Methods (2nd edn). Thousand Oaks, CA:
Sage.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

	Table 4.1. Collaboration analysis by level of auto

