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Abstract
Deep learning has revolutionized the integration of heterogeneous sensory data,
facilitating the extraction of valuable insights from multiple sources. This study
introduced DeepFusion, a deep learning-based framework aimed at enhancing
multi-sensor data fusion by analyzing cross-sensor correlations and adaptively
assigning weights according to measurement quality. The primary objectives were
to develop an efficient sensor fusion model, evaluate its effectiveness in human
activity recognition using real-world datasets, and compare its performance against
existing approaches. While multi-sensor fusion improves accuracy, resilience to
noise, and feature diversity, it also poses challenges such as increased
computational demands and the need for data synchronization. To assess
DeepFusion, two testbeds were constructed utilizing commercially available
sensors, including smartphones, smartwatches, Shimmer sensors, WiFi, and
acoustic sensors. Experimental evaluations revealed that DeepFusion
outperformed leading methods in human activity recognition. The dataset
encompassed various human activities in a device-free setting, such as typing,
writing, and walking. Despite classification challenges observed in the confusion
matrix, DeepFusion achieved the highest accuracy (0.908) on the CSI dataset,
exceeding the performance of DeepSense (0.860), SR+WC (0.865), SR+Avg
(0.833) and SVM (0.520), demonstrating its superiority in multi-sensor data
integration.

Keywords
Deep learning, Sensor fusion,
Human activity recognition, Multi-
sensor data integration.

Article History
Received on 05 February 2025
Accepted on 05 March 2025
Published on 12 March 2025

Copyright @Author
Corresponding Author: *

INTRODUCTION
The development of intelligent and user-friendly
internet of things (IoT) system, based on
interconnected computing and sensing devices, has
garnered considerable attention in recent years.
These systems paved the way for a new generation of
applications capable of handling complex sensing
and recognition tasks, enabling innovative
interactions between individuals and their physical
surroundings. The same object is typically being
monitored by several separate sensors in many of

these applications (Dhal et al., 2022; Dixit & Jangid,
2024; Weiberg & Finne, 2022). Wireless devices like
laptops and iPads that are placed in the monitored
subject's living quarters as well as gadgets, watches,
smartphones and smart glasses—can yield valuable
data about the subject's activities. Every one of these
gadgets offered a different "view" of the object of
observation and can be thought of as an information
source. It seems sense that by combining the
complimentary data from several sensors, it could
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increase the accuracy of activity detection (Smith and
Johnson, 2020). However, there are a number of
issues that need to be resolved before it can fully
utilized multi-sensor data. Initially, heterogeneous
data may be provided by various sensors. On the one
hand, many sensory data modalities (such as visible
light, WiFi signal, acceleration readings and
ultrasound) may be simultaneously collected in order
to identify the same behaviours. However, different
sensors may collect data in different ways (e.g.,
through varied transmission rates, signal strengths,
or sampling rates), which will further
heterogeneously integrate information gleaned from
various devices. Second, the quantity of information
that different sensors can capture varies depending
on a number of factors, including hardware quality,
placement, and ambient noise (Sachin & Jagdish,
2024; Alramadeen, 2022).
A perfect data fusion method should be able to
distinguish between different sensors' varying levels
of data quality and depend on the more illuminating
ones. Third, there's a chance that the data gathered
from several sensors will be associated with one
another; for this reason, the data fusion model needs
to record and account for this cross-sensor
correlation (Jagdish, 2024 ; Qi et al., 2020). Address
the aforementioned challenges, it was proposed to
utilize deep learning techniques, which have
demonstrated success in handling large, noisy and
heterogeneous datasets. In this research, developed a
deep learning system called DeepFusion to integrate
disparate sensory data. Used a CNN-based Sensor
Representation module in the model to uniformly
reduce the dimensionality of diverse inputs while
maintaining the distinctive qualities of each sensor
view (Chen et al., 2019). A weighted-combination
module by weighing the combination of multi-sensor
features and assessing the value of evidence each
sensor contributes. In order to extract and include
cross sensor correlation features in research model,
additionally build a Cross-Sensor module. By
leveraging the multi-sensor structure, the suggested
model can fully utilized the data gathered from
various sensors with varying quality levels and can
also identify distinct patterns in the data from
various sensor perspectives (Bian et al., 2022).

1.1.Hybrid Fusion Networks
Hybrid fusion networks represent an effective
approach for fusing heterogeneous sensory input by
overcoming the weaknesses of conventional data
fusion techniques. Such networks combine the best
features of several architectures to efficiently
integrate and fuse the input from different sources.
The Attention-Based Two-Branch Hybrid Fusion
Network, for instance, improves medical picture
segmentation by integrating fine and coarse
information across many scales through both CNNs
and Transformers1. This dual-branch technique
simultaneously extracts local and global information
to improve the accuracy and robustness of the
segmentation process (Chen et al., 2021).
A hybrid fusion network has been designed for the
medical picture segmentation of detecting brain
tumours. In this work, the multi-modal encoder-
decoder architecture was used, which incorporates
information from many modalities such as MRI and
CT images. Adding a multi-modal hybrid fusion
module enables the network to extract better
distinctive features from each modality, thus
reducing overall framework complexity while making
it increase the accuracy of segmentation. Hierarchical
and hybrid fusion networks have also been proposed
as effective approaches to model motion dynamics
and address non-homogeneous modalities. These
networks enhanced performance in tasks such as
autonomous driving and human activity recognition,
where the two-stream variations are extended to
three and six streams in order to be able to facilitate
more complex cross-modal learning (Vasudeva Rao
and Lingappa, 2019).

1.2.Networks, Graph Neural Networks (GNNs)
A specific type of neural network, called Graph
Neural Networks (GNNs), is designed to process data
organized as graphs, where nodes represent entities
and edges represent the interactions between these
things. GNNs are designed to handle non-Euclidean
data structures, unlike traditional neural networks,
which work on Euclidean data. This flexibility makes
GNNs applicable in a wide range of applications.
The fundamental mechanism of GNNs involves
message passing in which nodes update their
representation iteratively after having a discussion
with neighbors over information exchange. This
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mechanism allows the network to capture highly
intricately related and interacting information within
the data by means of aggregation as well as
propagation of information throughout the graph
(Liu and Zhou, 2022).
GNNs apply to the utilization of molecular biology,
natural language processing, recommendation
systems and studies of social networks and others. So
many books introduce GNN in a way as
comprehensive as describing designs, major ideas,
and realistic applications. And Towards AI studies
the theory on GNN for designing complicated
relationships. Generally speaking, the series above
describe very broadly how data is handled based on
the foundations of GNN (Zhou et al., 2020).

1.3.Deep Belief Networks (DBNs)
One variety of deep neural networks called the deep
belief networks that consists of many layers of
hidden units, known as latent variables and the
networks are excellent in learning hierarchical data
representation, which is why they are very suitable
for applications like natural language processing,
audio recognition and image recognition (Hinton et
al., 2006). Usually, restricted Boltzmann machines
are stacked into layers to construct DBNs with each
layer trying to extract even more extract features
from the input data. DBNs trained into 2 strategies:
Pre-training, in which each layer is taught individuals
and unsupervised to determine probability
distribution of data and Fine-tuning, in which
network as a whole is trained supervised to improve
performance on certain tasks (Mohamed et al., 2011).
DBNs can captured deep data representation and
described complex data distribution, they are widely
employed. They have shown very good results in
voice recognition, where they model temporal
correlation in audio signals to improve speech to text
accuracy and image classification where they
automatically learn features from raw pixel data.
DBNs also used for natural language processing such
as machine translation and sentiments analysis
because they are efficient at capturing complex words
phrase association (Bengio, 2009).
This study presented a DeepFusion architecture
specially designed for a sample sensing task: human
activity recognition (HAR). HAR is a critical
component in various IoT applications, including

smart homes, healthcare systems and fitness tracking.
Although the primary emphasis was on the HAR
application, the framework versatile design holds
promise for broader IoT applications involving
classification or identification tasks. Comprehensive
real-world experiments were conducted to evaluate
the DeepFusion framework across both device-free
and wearable human activity recognition scenarios.
The results demonstrated the effectiveness of the
proposed model, showcasing notable improvements
over existing state-of-the-art algorithms. The key
assistances of the study can be briefed as follows:
 Listed both the advantages and disadvantages of
fusing diverse multi-sensor data.
 DeepFusion is what was proposed to develop
informative representations of heterogeneous sensory
input. To improve the sensing performance,
DeepFusion may compute the crosssensor
correlations and pool data from different sensors by
assigning appropriate weights to every sensor's
measurement based on the quality of the
measurement.
 Developed two testbeds using available COTS
equipment, including wearable technologies from
smartphones, smartwatches and Shimmer sensors,
and wireless sensing devices from WiFi and acoustic
sensors. Real-world human activity data was collected
and empirical evaluation showed that the proposed
DeepFusion model outperformed the stateof-the-art
methods in human activity recognition when applied
to this dataset.

2. LITERATURE REVIEW
Guo et al. (2019) proposed the iFusion framework to
address the challenge of real-time integration of
disparate data sources for deep learning. It employed
advanced data fusion algorithms to process different
kinds of data such as text, images and sensor data
efficiently. Applications that require fast decisions,
such as autonomous driving, healthcare and smart
cities, depend on the real-time efficiency of iFusion.
Due to iFusion, which integrates pre-processing,
feature extraction and training in a data fusion
model, deep learning models can learn from
integrated data efficiently. This methodology
improved fast and accurate decision-making across
multiple domains and represented a significant
advancement in data fusion for deep learning.
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2.1. Deep Fusion and IoT-Based wearables
Bahador et al. (2021) focused on deep learning for
multimodal data fusion by detecting food intake
using wearable sensors. They have developed an
efficient technique to deal with high-dimensional
multisensory data by transforming time-series data
into 2D space for the better classification of eating
episodes. This has helped in improving accuracy and
scalability in the integration of sensor data, allowing
for personalized health monitoring. This work
contributes to further advancements in wearable
technology and real-time data processing in health
informatics.
Machine learning (ML) has gained recent success in a
wide range of fields, especially in the medical and
bioinformatics fields. Researchers have conducted
extensive studies on the application of deep learning
(DL) techniques to solve the problems in these fields,
which is important because ML is very precise. Deep
learning's ability to process and interpret vast,
complex and diverse datasets in realtime is especially
valuable for bioinformatics and medical applications
within Internet of Things (IoT) systems. This
capability provided insights that can improve
healthcare outcomes and enhance operational
efficiency across the industry. In IoT-based
bioinformatics and medical informatics, DL has
diverse applications, including image analysis,
wearable device monitoring, clinical decisionmaking,
diagnostics, therapy recommendations and drug
discovery (Amiri et al., 2024).
Dargazany et al. (2018) introduced Wearable Deep
Learning (WearableDL), a unified conceptual
framework that integrates wearable technologies
(WT), the Internet of Things (IoT) and deep learning
(DL). This architecture addressed key challenges by:
(1) ensuring scalability to manage large datasets; (2)
enabling autonomous feature engineering without
manual feature extraction or handcrafted features;
and (3) achieving high accuracy and precision when
learning from both raw labeled and unlabeled data
(supervised and unsupervised learning). In an effort
to grasp the current state of affairs, the authors
conducted an extensive review of over 100 recently
published studies focused on developing DL
algorithms for wearable and user-centered
technologies. Their findings reinforced and refined
the proposed bioinspired WearableDL architecture.

The study also provided valuable insights and
practical recommendations on the application of
WearableDL in big data analytics.

2.2 Framework for the Fusion of Heterogeneous
Sensory Data
Ignatious et al. (2023) research introduced an
adaptive selective sensor fusion paradigm for
enhancing the robustness of autonomous vehicles
(AVs) under challenging driving scenarios. The
proposed framework adapts sensor fusion at runtime
to suit the driving environment through switching
between early, late, and hybrid fusion approaches. It
is composed of components for advanced object
detection/classification, feature selection and the
processing of large amounts of different types of data.
Comparing the results of experiments with existing
fusion models, such as KITTI and nuScenes, reveals
higher accuracy and efficiency.
Liu et al. (2017) also pointed out the increasing
interest in heterogeneous sensor data fusion while
considering it as a complex and challenging area.
Main challenges dealing with missing values in
datasets and creating shared representations for
multimodal data in order to improve inference and
prediction accuracy. To address these challenges, a
Deep Multimodal Encoder (DME) was proposeda
deep learning-based system designed for tasks such as
novel modality prediction, sensor data compression
and imputing missing values in multimodal
environments. DME successfully captures intermodal
correlations at deeper network layers, while
intramodal correlations are focused in the initial
layers. This makes it superior to traditional methods,
which mainly emphasize intramodal relationships.
DME was proven to be highly effective in
experiments using real-world data from a 40-node
agricultural sensor network with three modalities,
such that the root mean square error for missing
data imputation was a mere 20% of that obtained by
conventional approaches like K-nearest neighbors
and sparse principal component analysis.

2.3 Deep Multimodal Fusion of Data with
Heterogeneous Dimensionality
Li et al. introduced a new architecture of deep
learning for combining multimodal data of different
dimensions in 2022. It extracted features from
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multiple modalities and projected the features into a
shared feature subspace to enhance the effectiveness
of data fusion. The method overcomes challenges
with heterogeneous dimensionality, leading to
accurate and reliable localization. The authors
evaluated their strategy using experiments and
confirmed that it outperformed state-of-theart
methods in accuracy and robustness. This approach
emphasizes the value of integrating many data
modalities and is especially helpful for robotics,
autonomous vehicles and augmented reality
applications.
Morano et al. (2024) studied diagnosis and treatment
of many diseases have significantly improved as a
result of the use of multimodal imaging. Some works
have shown the advantages of multimodal fusion for
automatic segmentation and classification utilizing
deep learning-based techniques, which is comparable
to clinical practice. Nevertheless, the fusion
procedures used by classification systems are
incompatible with localization tasks and existing
segmentation approaches are restricted to the fusion
of modalities with the same dimensions (e.g., 3D +
3D, 2D + 2D), which is not always feasible. The
suggested framework projects the features into the
common feature subspace by extracting them from
the various modalities. The framework was tested on
two tasks: segmenting retinal blood vessels (RBV) in
multimodal retinal imaging and segmenting
geographic atrophy (GA). According to their study
findings, the suggested approach performs up to
3.10% and 4.64% Dice better on GA and RBV
segmentation, respectively, than the most advanced
monomodal approaches.

2.4 Optimization of Data Fusion in Industrial
Environments
Deng et al. (2019) presented hybrid framework
integrating CNNs, RNNs and DNNs for data fusion
and anomaly detection in industrial settings. The
system improves model accuracy and resilience by
using CNNs for feature extraction from geographical
data, RNNs for temporal data, and DNNs for feature
integration. It effectively handled high-dimensional
data processing from multiple sources, including
cameras and sensors. Experiments conducted on real-
world industrial datasets show notable gains in
anomaly detection accuracy over baseline techniques.

All things considered, this study demonstrated how
deep learning methods may be used to optimized
data fusion in industrial settings, resulting in more
efficient control and monitoring systems.
Sultani et al. (2014) explained that Wireless Sensor
Networks (WSN) are still expanding at an
astonishing rate. WSNs are being used in a variety of
fields, including environmental, medical and
transportation as well as military and transportation
applications. Numerous moved may be present in
some of these applications, which presents serious
problems for data transfer, network longevity and
overall reliability. Data fusion techniques are
becoming more and more popular in WSNs to
increase the accuracy of reported data and aid in
event prediction. They are employed to raise the
information's level of dependability. Although data
correctness is addressed, the inefficiencies brought
forth by very big nodes and excessive data
redundancy remain unaddressed. While data
aggregation is a straightforward method of
optimizing data flow, it is not a comprehensive
solution. The huge WSN size reduces the
performance of the WSN and may even completely
impair its operation due to congestion and increased
traffic load in the network.

2.5 Data Fusion for Human Activity Recognition
Using Deep Learning
Vidya and Sasikumar (2022) concluded, with
wearable sensors, HAR has many applications in the
field of smart homes, surveillance, fitness and
healthcare. In spite of the vast computational
research on Human Activity Recognition (HAR),
many issues are still open for solving multi-sensor-
based activity recognition. Such issues involve
handling complex time series data, extracting the
meaningful feature vectors from multimodal data
and dimensionality reduction, all of which have to
be explored more. Four machine learning (ML)
classifier models, namely Support Vector Machine
(SVM), KNearest Neighbor (KNN), Ensemble
Classifier (EC) and Decision Tree (DT) were trained
to classify various human activities. This was done by
using entropy features derived from Empirical Mode
Decomposition (EMD) and discriminative statistical
information obtained from Discrete Wavelet
Transform (DWT). The proposed method was
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validated using a publicly accessible UCI dataset.
The experimental results, analyzed via confusion
matrix and parallel coordinate plot (PCP), showed
that the ML-based Human Activity Recognition
(HAR) framework reached up to 99.63% accuracy in
classification.

2.6 Deep Learning Techniques for Sensor Data
Fusion in IoT
Rajawat et al. (2021) investigated several deep
learning techniques for sensor data fusion in
Internet of Things applications and highlighted the
advantages, disadvantages, and future prospects of
each technique. The authors categorize these
techniques-which are autoencoders, CNNs and
RNNs-and provide a comprehensive overview of
their Internet of Things applications. Aiming at
improving the accuracy, resilience, and scalability of
IoT systems, the survey points out the importance of
sensor data fusion and tackles issues such as data
heterogeneity, real-time processing, and energy
efficiency. It thus highlights important topics for
additional research and provides insightful
information on the state of the field. Krishnamurthi
et al. covered a number of real-world issues,
including issues related to smart cities, healthcare,
building management, transportation, and
environmental monitoring, according to 2020.
The dataset from Duvall et al. (2016) contained
Ozone (O3) and Nitrogen Dioxide (NO2)
concentrations measured in Houston, Texas, from
4–27 September 2013 using Cairclip sensors and
Federal Reference Monitors (FRM). O3 values were
derived by subtracting NO2 values from the
CairclipO3/NO2 sensor. O3 data showed good
agreement with reference instruments (r=0.82), but
NO2 data exhibited low agreement (r=0.08).

2.7 Food Intake Episodes Detection Using
Wearable Sensors
Bahador et al. work of the year 2021 reflects on the
use of deep learning-based multimodal data fusion
algorithms and wearable sensors for detection of
food intake events. The time-series data was
transformed to 2D space in order to allow proper
categorization and, in fact, the authors were able to
manage the computationally complex high-
dimensional data coming from different sources.

This methodology leverages statistical dependencies
and correlations across disparate sensory inputs. It
yields more specific insights into dynamics in human
behaviour. The context of the presented study
showed method applicability within many contexts
along with promising personal eating habit tracking.
The major findings of this study underpinned the
significance of multimodal data fusion in terms of
wearable technologies for health monitoring and the
possible resolution of existing problems related to
heterogeneous data integration and real time data
processing.
Bedri et al. (2017) solved the problem of food
journaling that is often used but often undermined
by self-bias and recall errors leading to poor
adherence in the users. The wearable device EarBit
was designed to detect mealtimes. In the study, the
efficiency and usability of inertial, optical and
acoustic sensing modalities have been studied in
detail, with a greater focus on inertial sensing. The
results showed that EarBit attained an F1-score of
90.9% and recognition accuracy of 90.1% in highly
controlled laboratory settings. In a natural, real-world
unconstrained setting, EarBit correctly detected
chewing instances at a 93% level with an F1-score of
80.1% while detecting nearly all episodes of eating.
Critical for treating medical conditions like obesity
and eating disorders is Fontana et al. (2021) research
on understanding people's ingested behavior. Giving
the energy and minerals needed for human existence
also requires food intake. Historically, ingestive
behavior has been evaluated through self-monitoring
of food intake; however, this approach is often
imprecise, laborious and prone to misreporting. An
encouraging alternative are wearable sensors, which
monitor physiological responses related to several
stages of food consumption: hand-to-mouth
movements, biting, chewing and swallowing-to
provide objective measurements. Sensor data is
processed using advanced signal processing and
pattern recognition algorithms to automatically
identify and document each eating experience.

3. METHODOLOGY
This section introduced Deep Fusion, a unified deep
framework for human activity recognition using
multi-sensor data, designed to handle heterogeneous
inputs effectively. The architecture of the proposed
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model, depicted in Figure 1, consists of three core
modules: the sensor representation (SR) Module, the
Weighted Combination (WC) Modules and the
Cross-Srnsor (CS) Module. Each module is explained
in detail in the subsequents. Throughout the

framework, bold uppercase letters such as weight
matrix W represent matrices and tensors. Bold
lowercase letters, such as bias vector b, demoted
vector and standard characters such as hyper
parameter a indicate scalar values.

Fig.1. The Architecture DeepFusion Model.

3.1 Sensor-Representation Module
The multi-sensor data collected is represented as a set
of heterogeneous continuous time series, each
comprising multiple non-uniformly sampled signals.
A CNN-based module is introduced to directly learn
sensor representations from the raw heterogeneous
data in order to retain the distinct features of each
sensor while standardizing the input dimensions
across sensors. Convolutional Neural Network
(CNN) blocks are particularly well-suited for this
activity recognition framework due to their efficiency
and effectiveness. These blocks convert raw data into
low-dimensional representations while preserving
their original size, thereby enhancing the capability
to express features effectively.
In a Convolutional Neural Network (CNN),
convolutional layers with flexible filters and strides
play a pivotal role in reshaping input data.
Additionally, pooling layers may be employed for
downsampling the data. When constructing stacked
CNN blocks for different sensors in this model,
several parameters must be defined. Assuming the

input data comprises N sensing nodes, denoted as
{X₁, ..., Xᵢ, ..., Xₙ}, the sensor representation for the i-
th sensing node (Xᵢ) is obtained through a series of
stacked CNN blocks, represented as CN Nᵢ.
Si = CNNi (Xi ; θi)
The function CNNi was the stacked CNN blocks
that are tailored for each input matrix Xi and θi
denoted the parameters to be learned for these
specific stacked CNN blocks. In this model, it was
also utilized the ReLU activation function, batch
normalization and dropout techniques within the
CNN blocks. The sensor representations obtained
from all sensing nodes, denoted as {S1,. . ., Si,. . .,
SN}, are exploited to characterize the heterogeneous
inputs within a high-level feature space of uniform
size.
Next, to standardize feature extents for input into
the remaining two modules, the learned hidden
representations were reformatted by combining and
flattening processes. For the input to the WC
Module, the pooling operation was applied by way of
follows:
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Fi = Pooling (Si)
Above formula allowed to reduce the size of the
input features to an appropriate level for calculating
numerical weights, which are subsequently passed to
RNN. In contrast, for the Cross-Sensor Module,
utilized the flattening operation to create a cross-
sensor input vector hi for the i-th sensor, as follows:
hi = Flatten(Si)
By adopting this approach, the model efficiently
handles the varying dimensionalities of raw data
from different sensors. This helped apply dedicated
CNN blocks to each sensor, each with its unique set
of parameters, in order to standardize heterogeneous
inputs and this method enabled the model to learn
meaningful representations from sensors with the
hope that there would be preservation of the distinct
characteristics of each sensor in addition to
enhancing performance.

3.2. Weighted-Combination Module
Different sensors may provide different levels of
information due to the type of sensing signal,
hardware quality, distance and angle to the observed
object, as well as environmental conditions and
ambient noise. An effective activity recognition
method needs to address these differences in data
quality across sensors and prioritize the more
informative ones to enhance overall performance. To
resolve this issue, a Weighted-Combination module
was introduced. This module determines the quality
of information from each sensor, which is called the
quality weight and integrates the multisensor data in
a weighted manner.
The Weighted-Combination module is inspired by
the attention mechanism (Firat et al., 2016), a
weighted aggregation technique commonly used in
applications such as machine translation, computer
vision and disease prediction (Yuan et al., 2018).
However, traditional attention mechanisms often
assume that only a few views are relevant to the task,
which results in most views receiving near-zero
weights. This assumption does not stand for human
activity recognition, which may involve providing
multiple sensors' valuable insights collectively to
enhance the performance.
To tackle this challenge, introduced a novel weight-
assignment strategy aimed at maximizing the use of
multi-sensor information. For the learned weight-

combination input matrices {F1, · · · , Fi, · · · , FN},
first utilized a pooling layer followed by the flattening
operation to derive their encoding vectors {u1, · · · ,
ui, · · · , uN} for each sensor. Specifically, the
encoding vector for the i-th sensor, ui can be
computed as follows:
ui = Flatten (Fi)
Subsequently, the quality weight for the i-th sensor,
denoted as ei, can be calculated using the following
formula:
ei = w wc ⊺ ui + b wc ) /lw wc ( eq1)
where w wc and b wc are the parameters that need to
be learned and lw cl represents the length of the
encoding vector ui. Based on Equation (1), it can
then derived a normalized quality weight αi as
follows:
αi = α˜i

∑ j α˜j

Where α~i represents the rescaled quality weight
obtained using a sigmoid-based function.
α˜I = �

1+exp (−��
�)
+ c (eq 2)

Where a, b and c are predefined hyper parameters.
In Equation (2), the upper and lower bounds of the
rescaled weights are a+c and c, respectively, while b
controls the slope of the function near zero. By
appropriately setting these hyper parameters, the
variance of the normalized quality weights among all
sensors can be minimized, allowing our model to
utilize a greater number of sensors for activity
recognition. Using the normalized quality weights of
all sensors {α1,⋯ ,αi,⋯ ,αN}, the sensor combination
matrix C can be calculated by weighted aggregation.
C = ∑ αi ⊙ Fi (Eq 3)
⊙ denotes element-wise duplication. The sensor
combination as a vector, use a 2-layer stacked Gated
Recurrent Unit (GRU) to compute the output vector
of the Weighted-Combination Module, denoted as
per r wc as follows:
H1:L=GRU(C1:L;ϕ) (Eq 4)
r wc= ∑ l Hl (Eq 5)
L represented the column length of the matrix, Hi
denoted the output vector from GRU and ϕ
encompasses all the GRU parameters. The output
vector rwc is obtained by summing the output vector
from GRU. This method enabled the model to
effective utilized multi-sensor information by
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capturing the variability across different sensors and
emphasizing those that provide more significant data.

3.3. Cross-Sensor Module
The previous module successfully combines multi-
sensor data but treats each sensor independently,
neglecting the correlations between them. In human
activity recognition, different sensors often provide
related information that can enhance the overall
understanding of the activity. By capturing and
incorporating cross-sensor correlations into the deep
learning framework, the model can identify more
generalized patterns and improve its performance.
This could lead to merely concatenating raw input
features that might not provide robust or accurate
results. In order to surmount this limitation, a Cross-
Sensor module was introduced to add
complementary information to the features obtained
from the weighted combination module.
In this module, given the cross-sensor input vectors
{h1,⋯,hi,⋯,hN}, the correlation vector for the ith
sensor computed as follows:
vi = f ( Wv i ⊺ [h˜ i,1 ⊕ h˜ i,2 ⊕ · · · ⊕ h˜ i,N ] + b v i )
⊕ represents the concatenation operator, Wv i and b
v i are the learnable parameters of FCi cv (a singlelayer
fully connected neural network) and h ij denoted
using element-wise variance (Mou et al., 2015).
h˜ i,j = hj − hi

It is essential to highlight that there are N−1
consistent associations, excluding self-correlation. By
utilizing the correlation vectors {v1,…,vi,…,vN} the
output vector of the Cross-Sensor Module,
represented as r cv, can be obtained through an
averaging operation.
r cv = 1 / � ∑ ��
This allowed the model to capture the correlations
between multi-sensor data in a low-dimensional space.
Unlike the WC Module, whose features are
integrated together with weighted combinations
from different sensors, the Cross-Sensor Module
makes use of an averaging operation. This is because
each correlation vector already inherently contains
the relationships between sensors and does not
necessarily need them to be assigned varying
importance factors.

3.4. Sample Population
Data was collected from publicly available IoT
datasets in CSV (Comma Separated Values) format
from platforms such as:
 Kaggle
 UCI Machine Learning Repository
 ThingSpeak
Microsoft Azure Open Datasets
 AWS Public Datasets  Google Dataset Search
 CityPulse Dataset Collection
 OpenAIRE These datasets contained sensory
information across various domains, such as smart
cities, healthcare, environmental monitoring and
human activity recognition, which was analyzed to
evaluate the proposed deep learning framework.

3.5. Data Preparation
The data preparation phase was involved in cleaning
and pre-processing the collected datasets. This step
was included:
 Removing duplicates: Ensuring no repeated entries
exist in the data.
 Handling missing values: Using imputation
methods or removing entries with missing data.
 Data transformation: Changing raw data into a
structured format appropriate for deep learning
examination.
Additionally, each dataset was structured to create
unique identifiers for sensors, timestamps and the
associated environment. Feature extraction was
performed to prepare data inputs for algorithms like
Hybrid Fusion Networks, Graph Neural Networks
(GNNs) and Deep Belief Networks (DBNs).

3.6. Framework Development
The framework was developed based on the
combination of Hybrid Fusion Networks, GNNs and
DBNs. The following steps was followed for
framework implementation:

3.6.1. System Initialization:
Cryptographic keys were generated with the process
of system initialization, which was a must setup safe
data handling protocol. These keys made it possible
for encrypted communication to occur while
ensuring sensitive information during its
transmission remains private. The framework also
combines strong algorithms that build on data
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authenticity and integrity while protecting illegal
access and thefts of data. This phase also arranges in-
depth validation procedures with the purpose of
verifying the user and device identification in the
system. Finally, these basic steps form the outline of
a sound and reliable system for data management.

3.6.2. Sensor Data Management:
Hybrid fusion network were used to implement
sensor data management which aggregated data from
multiple sensors in an intelligent manner. To ensure
that the most trustworthy and pertinent data was
incorporated into system, the fusion process gave
priority to the quality and kind of data. The
environment was seen in its entirety and cohesively
by combining sensor data from several sources.

3.6.3. Graph Neural Networks:
To capture cross sensor correlations appropriately,
the complicated interaction between sensors were
modelled using graph neural network (GNNs).
GNNs might be examined and comprehend the
relationship and dependencies between sensors by
expressing them as nodes and edges inside a graph
structure. Using this methods, the system was able to
take into consideration both direct and indirect
influences between sensor data, which increased
forecast accuracy and robustness. The system capacity
to handle linked data streams was improved by
GNNs, leading to more thorough insights and
effective decision-making.

3.6.4. Deep Belief Networks:
DBNs allowed for the extraction of hierarchical
features from fused sensor data in such a way that
deep insights into intricate patterns were gained.
This was made possible due to their ability to learn
low-level and high-level representations using many
layers of obstruction that increase the significance of
the data for tasks that came after. These extraction
features improved the system capacity to make
precise predictions and classifications, particularly in
situations involving sizable and varied datasets. The
most important elements are given priority. It
promotes more effective and efficient decision
making.

3.7. Data Analysis
3.7.1. Performance Evaluation:
The framework underwent rigorous testing since it
was combining different sensory data and enhancing
functionality in internet of things applications. The
system managed to provide more dependable and
comprehensive analysis through the use of data by
many sensors for integration. These metrics included
information on how well the system could anticipate
and categorized events reduce false positives and
negatives and strike a balance between precision and
recall. The outcomes showed how much framework
may improve the functionality of internet of things
applications.

3.7.2. Scalability and Reliability Testing:
For testing system stability and reliability in dealing
with large data sets of various sources,
comprehensive stress tests were performed. This step
aimed at determining the system's presentation
under extreme conditions by generating large data
volume and traffic loading. The key focus of this
stage was to ensure the framework was robust
enough to process data in real time without losing
the accuracy and performance. Stress testing also
helped identify potential bottlenecks ensuring that
the system could scale without interruption while
retaining its robustness and dependability in
extensive IoT scenarios.

3.8. Reporting and Documentation
All findings from the framework’s implementation
and performance evaluation was compiled into a
comprehensive report. That was included:
 Detailed explanations of the methods used.
 Performance metrics and usability assessment.
 A final framework documentation outlining design,
implementation and user guidelines.
This research contributed to the growing wealth of
knowledge in deep learning-based sensor fusion by
offering informative information on how complex
algorithms can be applied to fuse data from different
sensor sources. The study became a driving force in
furthering research into large-scale IoT systems as it
demonstrated the efficiency of methods such as
Graph Neural Networks and Hybrid Fusion Links.
These results did not only suggest that IoT
applications might perform better but also served as
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a motivation for future works to develop more
effective, reliable and flexible sensor fusion
frameworks.

4. FINDINGS
The DeepFusion model was evaluated using real-
world test beds for human activity recognition. This
started with the state-of-the-art methods for human
activity recognition used as baseline comparisons.
Then experiments were conducted on human activity
data gathered from two test beds: using commercial
off-the-shelf wearable devices such as smartphones,
smartwatches and Shimmer sensors, and also wireless
sensing devices such as Wi-Fi and acoustic sensors.

4.1. Baselines
The SVM is a widely administered machine learning
model, as evidenced in previous research by Zhou et
al. (2017), who used it for human activity recognition
tasks. Since a standard linear SVM is built for binary
classification, a one-vs-all strategy was used in this
study to solve the multi-class classification problem.
For the experiments, data from the whole sensors
was merged into single flattened article vector, which
later was put to the SVM model.
DeepSense is one of the state-of-the-art deep learning
models for the classification of multi-sensor data. Its
architecture consists of three local CNN layers, three
global CNN layers and two GRU layers (Ali et al.,
2015). In these experiments, followed the settings

used in the original paper. Specifically, each
convolutional layer used 64 filters of size 3 × 3.
Furthermore, dropout and batch normalization
techniques are used to enhance the performance of
the model.
Variants of DeepFusion: The proposed model of
DeepFusion takes both the different contributions of
a variety of sensors and the correlations into account.
Its three main modules are: Sensor respresentation,
Weighted combination module and Cross sensor
module. To set baselines. 4.2. Experiments on
Wearable Sensor Data In this section, assessed the
performance of the proposed DeepFusion model
using a real-world activity dataset gathered from
various wearable sensors positioned on different
parts of the body.

4.2.1. Experiment Setup
Three types of wearable devices were used, namely
smartphones, smartwatches and Shimmer sensors.
Triaxial accelerometers, gyroscopes and triaxial
magnetometers were each attached to them. Data
collected from six different volunteers, all males and
females, who are wearing four different sensors on
body regions: namely, two placed on the upper left
arm; one on the left waist and one on right wrist and,
finally, another on the right ankle. A total of 27
activities were conducted, as indicated in Table 1,
where each participant was required to carry out each
activity for one minute.

Table 1: Activities in Wearable Sensor Dataset.
No. Activities No. Activities No. Activities
1 running 10 going downstairs and

making a
phone call

19 standing and washing
hands

2 running in place 11 going upstairs 20 standing and wiping
the
blackboard

3 sitting and making a phone
call

12 going upstairs and making
a
phone call

21 standing and wiping the
table

4 sitting and keyboarding 13 standing and making a
phone
call

22 standing and writing

5 sitting and typing on the
phone

14 standing and washing
the
dishes

23 standing and writing on
the
blackboard
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6 sitting still 15 standing and keyboarding 24 walking backward
7 sitting and wiping the table 16 standing and typing on

the
phone

25 walking and making a
phone
call

8 sitting and writing 17 standing still 26 walking forward
9 going downstairs 18 standing and brushing the

teeth
27 walking in place

4.2.2. Data Preprocessing
The data collected from each sensing device includes
nine signals: three from the accelerometer axes, three
from the gyroscope axes and three from the
magnetometer axes. Despite variations in sampling
rates and value ranges among the sensors, all data
was downsampled to 25Hz and scaled to a range
between 0.0 and 1.0 based on their magnitudes. The
data was then segmented into non-overlapping 2-
second windows, each containing 50 data points.
Each segment was paired with its Fast Fourier
Transform (FFT) to serve as input for the deep
learning model. As a result, the final dimensions of
each data segment from a single sensor are 9 × 50 × 2.
For the traditional model based on classification by
Support Vector Machines (SVM), each signal
provided by the accelerometer, gyroscope and
magnetometer on every sensor was considered and
for all of these 36 features, 432 were derived. The
extracted features comprised of mean, standard
deviation, MAD, median, maximum, minimum,
energy, signal magnitude area and interquartile range
of each axis for x, y and z axes. Additionally,
magnitude of each signal was calculated together
with the angles between each signal and its three axes,
pairwise correlations among the axes, the energy of
each signal and the signal magnitude area.

4.2.3. Model Settings
In the experiments involving wearable sensor data,
constructed a sensor representation extractor
consisting of six stacked CNN blocks for each
sensing device. The convolutional layers utilized
filters of sizes 3 × 5, 3 × 3, 3 × 3, 3 × 3, 1 × 3 and 1 ×
3, with each convolutional layer containing 64 filters.
The initial four CNN blocks operate without
padding and max pooling is applied to down sample
the data. For the Gated Recurrent Unit (GRU), the
hidden state size is configured to 64. In the fully
connected neural networks of the Cross-Sensor
Module, the size of the shortened link vector vi also

set to 64. ReLU is used as the activation function
throughout. Dropout rates are set to 0.8 for the
CNN and 0.7 for the RNN. The hyper parameters
are configured as follows: a=9.0, b=0.01, c=10.0,
β=0.1and γ=0.1. The model training process utilizes
the ADAM optimization algorithm with a learning
rate of 1e−4 and a batch size of 100. Performance is
assessed based on accuracy.

4.2.4. Performance Validation
In this experiment, a leave-one-subject-out strategy
was used for the evaluation dataset and the average
accuracy score across all subjects was calculated as the
performance metric. Table 2 presents the accuracy
results for all methods applied to the wearable sensor
data. The proposed DeepFusion model achieved the
highest performance, while the traditional Support
Vector Machines (SVM) approach performed the
least effectively. This highlighted the superiority of
deep learning models in human activity recognition
(HAR) tasks. Among the three deep learning baseline
models, SR+WC achieved the highest accuracy, due
to its consideration of data quality from different
sensors, unlike DeepSense and SR+Avg, which do
not account for variations in data quality across
sensors. The DeepFusion model effectively weights
different sensors and captures their
interrelationships, leading to the best performance.

Table 2. Performance on the Wearable Sensor Data.
Model Accuracy

SVM 0.350

DeepSense 0.862

SR+Avg 0.835

SR+WC 0.870

DeepFusion 0.905
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4.3. Experiments on Device-Free Human Activity
Data
While device-based methods effectively monitor
human activities, they come with significant
limitations, such as the added burden and
discomfort for users who must wear the devices. To
overcome this challenge, considerable efforts have
recently been directed toward developing devicefree
human activity recognition techniques that utilize
information from existing indoor wireless
infrastructures, eliminating the need for individuals
to carry dedicated devices. The underlying principle
of these methods is that a person's activities can be
inferred by analyzing the information conveyed
through wireless signals transmitted between paired
devices (e.g., smartphones, laptops, WiFi access
points). Each sender-receiver pair provides a distinct
"view" of the monitored subject.

4.3.1. Experiment Setups
The experiment involved analyzing seven distinct
human activities, as detailed in Table 3. Data
collection was conducted with eight participants,
including both males and females. Each participant
performed each activity for a duration of 51 seconds,

with all activities repeated across two rounds. Two
types of signals, WiFi and ultrasound, were recorded
during the process.
WiFi signals were captured using a TP-Link AC3150
Wireless WiFi Gigabit Router (Archer C3150 V1),
which transmitted packets to multiple receivers at a
steady rate of 30 packets per second, simulating
typical real-world wireless communication. Each
receiver was equipped with an Intel Wireless Link
5300 NIC, operating on Ubuntu 11.04 LTS with a
2.2.36 kernel. The receivers utilized the Linux
802.11n CSI extraction toolkit, which generated
Channel State Information (CSI) matrices for 30
sub-carriers across both the 2.4 GHz and 5 GHz
frequency bands.
For ultrasound signal collection, it was employed an
Apple iPad mini 4 as the sound generator, which
transmitted near-ultrasound signals at a frequency of
19 KHz toward the subject. Given that the
microphones on smartphones can sample at rates up
to 44.1 KHz, used three Huawei Nexus 6P
smartphones as receivers to capture the ultrasound
signals reflected off the subject's body. These
receivers were positioned at various locations within
the room.

Table 3: Activities in Device-Free Human Activity Dataset
ID Activities ID Activities ID Activities
1 Rotating the chair 4 Typing 7 Writing
2 Sitting during the phone
call

5 Walking - -

3 Walking during the
phone call

6 Sitting and
wiping

- -

4.3.2. Performance Validation
Table 4 summarizes the accuracy of various methods
evaluated on the CSI dataset, showing consistency
with results obtained from wearable sensor data.
Among the methods, the traditional classification
approach using support vector machines (SVM)
achieved the lowest accuracy, while the proposed

DeepFusion model delivered the best performance.
These findings highlighted the advantages of
leveraging deep learning models for human activity
recognition (HAR) tasks. Furthermore, the results in
Table 4 demonstrated that incorporating sensor
weights and their interrelationships significantly
improves recognition accuracy.

Table 4: Performance on the CSI Dataset.
Model Accuracy
SVM 0.520
DeepSense 0.860
SR+Avg 0.833
SR+WC 0.865
DeepFusion 0.908
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The confusion matrix presented shows the
performance of a classification model, likely a deep
learning model, in predicting six different activities:
"LAYING," "SITTING," "STANDING,"
"WALKING," "WALKING_DOWNSTAIRS," and
"WALKING_UPSTAIRS." Ideally, a highperforming
model would produce high values along the diagonal,
indicating correct predictions for each activity, and
low or zero values in off-diagonal cells, which
represent misclassifications. However, in this matrix,
we observe that all the predicted labels fall into a
single category, "SITTING," regardless of the true
label. This suggests that the model is struggling
significantly, as it has not correctly identified any
class except for "SITTING."
In more detail, we see that the counts for each
activity under "True label" align with the number of
instances for that activity, but the model's predicted
labels place every instance into the "SITTING" class.
For example, 2,982 instances of "LAYING" are all
misclassified as "SITTING," as are 3,007 instances of
"SITTING," which are correctly classified. The same

misclassification pattern continues for the other
classes, with every instance assigned to "SITTING."
This outcome implies a major issue in model
training, feature extraction, or data handling that has
led to a complete collapse in classification
performance.
One possible reason for this confusion matrix
pattern could be the model's bias toward a specific
class due to imbalanced data or inadequate feature
differentiation across classes. Another possibility is
that the fusion of sensory data from heterogeneous
sources (as implied by the thesis title, "Deep Fusion:
A Deep Learning Framework for the Fusion of
Heterogeneous Sensory Data") did not capture
enough unique information to distinguish between
these activities. In general, deep learning combines
data from different sources in a fusion process that is
usually carried out to enhance classification accuracy;
however, this might not be the case in this
experiment as it was possibly noisy, misaligned, or
poorly represented features in the fused dataset.
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Relevant studies have explored similar challenges in
deep learning for activity recognition. For example,
Anguita et al. (2013) in "Human Activity
Recognition on Smartphones using a Multiclass
Hardware-Friendly Support Vector Machine"
addresses issues with activity classification from
wearable sensors. Another related study, "Deep,
Convolutional and Recurrent Models for Human
Activity Recognition using Wearables," by Ordonez
and Roggen (2016), explored the efficiency of deep
learning architectures in activity recognition tasks,
emphasizing the data preprocessing and fusion
methods. Multimodal Sensor Fusion for Activity
Recognition in Wearable Body Sensor Networks"
explored the integration of heterogeneous data for
improvement in classification accuracy, which
resonates with the objectives of the "Deep Fusion"
framework developed by Huang et al. in 2019.
This plot is of training accuracy versus validation
accuracy for a deep learning model at each of the 15
epochs. The blue line, referring to training accuracy,
begins at an accuracy of roughly 0.1670, staying
relatively unchanged through the end. This said that
the network has achieved its stable level regarding
training data; however, at such a very low accuracy
level, the model cannot seem to learn anything
significantly useful from this training data. This may
indicated that the model architecture or the data
itself is not suitable for this particular task.
Validation accuracy (orange line) remains
approximately at 0.1645 for all epochs and does not
show any significant improvement or convergence
with training accuracy. This gap between the training
and the validation accuracy indicates poor
generalization, since such a model is not transferring

its learned generalization to unseen data. The failure
to improve the validation accuracy might be due to
model underfitting, insufficient complexity in the
model, or even data imbalance issues that prevent
the model from correctly identifying patterns in the
validation data.
The problem might be of data pipeline; it could have
a mismatch with the model architecture and the
sensory data nature as well. Considering that the
validation accuracy is already flat and is low, maybe a
more complex set of methods could be needed-such
as data augmentation, tuning of hyperparameters, or
simply reviewing the characteristics of the features in
the inputs-to make learning more efficient in the
model. In heterogeneous sensory data frameworks,
accuracy is hard to achieve without proper feature
extraction and preprocessing of data.
Related studies have also explored similar challenges
in deep learning frameworks for activity recognition
with heterogeneous sensory data. For instance, in the
study Activity Recognition with Smartphone Sensors
Using Deep Neural Networks by Ronao and Cho
(2016), the authors investigate the impact of feature
extraction and network complexity on model
performance. Other relevant work includes Sensor
Fusion for Activity Recognition Using Deep Neural
Networks by Wang et al. (2019), discussing advanced
fusion techniques to improve the accuracy of the
model. Jiang and Yin's paper, Deep Learning for
Sensor-based Human Activity Recognition:
Improving Accuracy with Data Fusion, published in
2015, highlights the significance of data processing
in enabling a robust result. These studies provide
insights that can inform improvements in model
accuracy for heterogeneous sensory data fusion
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This plot shows the training and validation loss
curves for 15 epochs in a deep learning model.
Training loss (blue) and validation loss (orange)
indicate how well the model is fitting to the training
data and generalizing to unseen data, respectively.
Both losses are initially high, which means that the
model does not immediately learn patterns in the
data. However, as the training progresses steadily,
losses decrease steadily reflecting that the model is
improving in minimizing prediction errors.
Interestingly, the validation loss drops with a similar
rate to that of the training loss but a bit faster across
epochs. This often is a good sign, since it means the
model is learning well and generalizing well without
overfitting to the training data. In case the model
overfits, then the training loss continues to decrease
but the validation loss starts increasing. Here,
parallel descent of both losses indicates that the
model is not memorizing the training data but is
actually learning meaningful patterns.
At around epoch 14, the two losses are at their
lowest points; this might indicate the best point for
the model. If this trend had continued with
additional epochs, then perhaps one could see
convergence or increasing validation loss that would
mean overfitting. The trend of validation loss
decreasing below the training loss at certain points
may suggest a well-regularized model, possibly due to
dropout layers or other regularization techniques
that avoid overfitting.
Similar studies of deep learning in activity
recognition have explored patterns that are alike. For

instance, the work on Human Activity Recognition
Using Multimodal Deep Learning by Jiang and Yin
in 2015 is concerned with low validation loss when
multimodal fusion tasks are performed. Another
relevant study is Sensor Fusion with Deep Learning:
Human Activity Recognition with Inertial Sensors by
Hammerla et al. (2016), which investigates the
effectiveness of sensor data fusion in enhancing
model generalization. Furthermore, Alsheikh et al.
(2016) work, Efficient Activity Recognition with
Deep Feature Fusion, highlights how fusion
strategies impact model training and generalization
in activity recognition tasks. These studies will offer
insights for the optimization of the deep learning
framework in heterogeneous sensory data fusion

5. CONCLUSION
The proliferation of different internet of things
systems has significantly opened new possibilities for
classifications and recognition applications. These
systems permitted the use of multiple sensory devices
to monitor the same object or activity and from each
of these devices, comes a unique source of
information. This multi-sensor strategy enabled a
deeper understanding of the monitored entity, as
various sensors can capture different types of
information generated by these diverse sensors. Thus,
it proposed a unified deep learning framework called
DeepFusion. The new model was specifically
designed to extract meaningful features from
heterogeneous sensory inputs, allowing it to process
and analyze data from diverse sources. This not only
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improved the performance of classification and
recognition tasks but also addressed the challenges
posed by the varing quality and types of sensor data.
It does this by incorporating weighted-combination
features that highlighted the importance of different
sensors and cross-sensor features that capture their
interrelationships. To verify the DeepFusion model,
it established two real-world testbeds based on
human activity recognition. These test-beds
employed commercially available wearable and
wireless devices enabling us to collect a wide range of
activity datasets. The experiment results obtained
from these datasets illustrated the model
effectiveness in fusion heterogeneous sensory data by
skillfully combining complementary information
from various sensors. deepFusion achieved
significant improvements in classification and
recognition results. This capability underscored the
model potential for a wider array of application
within the IoT domain, where accuracy and reliable
data interpretation is crucial for advancing
technology and enhancing user experiences.
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