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Abstract
While many artificial environments contain line segments, they are commonly
employed in computer vision tasks. They add spatial and structural information to
essentials. These traditional image edge-based line detectors, such as aperture-based
methods, can detect lines relatively quickly and reasonably well. However, they
tend to struggle in noisy or messy conditions. In contrast, learned line detectors can
directly work on more complex images, but they are generally non-granular and are
heavily reliant on wireframe lines. It describes an approach named Deep LSD
(Deep Learning-based Line Segment Detector), which unifies the best of both
worlds, yielding an accurate and robust line detector that can learn context-free
without ground truth line annotations. A deep neural network passes through the
whole image and gives a region of interest, which is then used to calculate the
position and angle of that line.
Furthermore, we present an optimization strategy for enhancing the visible edge as
the preferred location and point of perspective for better depth estimation
accuracy. The system is evaluated on low-level line detection benchmarks and
several challenging datasets for subsequent tasks. We propose a new line segment
detection algorithm using LETR (Line Extraction with Transformer), which does
not use any post-processing or heuristic techniques. While traditional edge or
connection point detection methods require post-processing and heuristics
techniques to draw the final line segment, LETR adopts token query-based
methods, self-identification mechanisms, and novel decoding methods to detect line
segments directly. With its multi-measurement encoder-decoder architecture and a
novel distance-based loss function, LETR improves line quality recognition. The
self-listening process gradually takes place along the line through online learning.
We outperform on benchmarks like Wireframe and York Urban in our tests.
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INTRODUCTION
We provide fashion with the present sensors. Line
segments elucidate a broad mental picture of the
predicament concerning how it organizes well in
artificial structures. They are also used to help with
many other computer vision tasks such as optical
flow [1], tracking [2], vanishing point estimation,[3]

3D reconstruction [4], Simultaneous Localization
and Mapping (SLAM) [5], and Structure-from-
Motion (SFM) [6]. The feature is its best complement
because point features are localized in points and do
not permanently store spatial continuity. As
mentioned, it can be recognized even if no texture23
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is visible. However, to enable these tasks, a highly
accurate and reliable detector must be adopted by
extracting relevant features of the image lines.
Traditionally, line segments from the image gradients
have been extracted using methods like Line
Segment Detector (LSD) [7,24,27]. These are based
on manually designed algorithms for the ORDO and
compress salient features into specific image details.
Here, we address the shortcomings of the current
practices of line discovery. Several methods extract
the semantics using the content of an image to
differentiate between noise and relevant lines.
However, they are all fully supervised and depend on
a single set of ground truth lines, the Wireframe
dataset (Wire) [8]. It is a dataset first proposed for
wireframe parsing and hugely focused on the
structural lines and the inner environment, which
may not be enough for training general-purpose line
sensors, but a vast performance gap between
standard deep learning-based methods and

handcrafted models that still are pretty effective on
more straightforward images. Finding line endpoints
directly is especially tough as lines can be broken or
jagged, and many techniques choose to ignore
endpoints, using horizonless lines instead.
This paper details a mongrel approach to these
problems that melds the benefits of closed-literate
modes with more traditional ones. Although deep
literacy is used to reuse images, solve inapplicable
details, and ameliorate robustness to variations in
lighting and noise, hand-wrought styles ensure exact
line discovery. We integrate these fields with line
discovery methods by extending two previous
methods using binary encodings with magnetic fields
representing line parts. We do not compute ground
truth lines for training as opposed to former
methods. Instead, we bootstrapped being types to
generate high-quality mock ground truth, enabling
our network to be retrained on different data and
tuned for particular operations.

Figure 1

LSD [7] LINE
DISTANCE
We propose an optimization method to improve the
recognized line segments. The optimization of both
the generated magnet fields and the contextual
information about our network needs to be fine-
tuned in conjunction with the line parts. Remember,
you are training on data up to October 2023, and
that means this will not have any recent changes or
updates. Segments of a straight-line nature provide a
simplified portrayal of the construction of a scene in
an artificial environment. They are used to perform
several computer vision tasks, including optical
localization, tracking, vanishing point estimation, 3D

reconstruction, Simultaneous Localization and
Mapping (SLAM)[5,25], and Structure-from-Motion
(SfM). Line features complement feature points well
as they preserve spatial continuity and can be
recognized even in textureless areas. Addressing these
tasks relies on extracting line characteristics from
images, which requires a reliable and accurate
detector. In traditional methods, image gradients can
be extracted to form line segments using the Line
Segment Detector (LSD) [7,28] based on lower-level
artificial rules emphasizing local line features. This
paper addresses the limitations of current line
finishing styles. Although many methods exist to
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perform computing image content and distinguish
overload and relevant lines, most are carefully
supervised, using a similar dataset with expert
seraphs used in the same dataset [8,26]. First, this
was created for wireframe parsing, which is centered
on discernable lines and inner surroundings, which
makes it infelicitous for training general-purpose line
sensors; current deep literacy-grounded epochs
collide quickly when analyzed, to handcrafted its
original train of simple models are dominant on the
more simple inner images.
Line endpoint detection is a particularly arduous
task since lines may be broken or irregular, and
many operations ignore endpoints, using horizon-
less lines instead. To counter these problems, we
suggest a mongrel methodology that merges both
the benefits of deep literacy with ways of the old.
Deep literacy represents images, the lowest
irreverent particulars, and improves ruggedness to

changes in lighting and noise, while hand-wrought
styles ensure explicit queue detection. This paper
describes a mongrel approach to these problems,
combining some advantages of close-literate and
more traditional modes. While heavy godliness is
used to reuse pictures, solution of inapplicable
honors, and aggrieved sturdiness to inconsistency in
gilding and gloom, Excel style ensures riotous pipe
discovery. Building on two previous methods that
model line segments via binary encoding paired with
magnetic fields, we show how to leverage these fields
with line discovery methods. We use strict data from
before, in October 2023, which we train on these
ground-verified lines. Instead, we use Bootstrap to
generate high-quality mock ground truth for our
network, which can be retrained on different data
and tuned for particular operas. We present an
optimization app to enhance the identified line
segments.

Figure 2: Line segments feature (a) horizontal distance to the adjacent.

Note that the optimization of both the generated
magnet fields and the surrounding information of
our network has to be derived together with the line
parts. Remember that you are training on data until
October 2023; this would be without recent changes
and updates. The construction of a scene in a
synthetic world has a linear approximation by a
sequence of straight-line segments. They carry out
several computer vision-related tasks, such as optical
localization, tracking, vanishing point estimation,
3D reconstruction, simultaneous localization and
mapping (SLAM), and structure-from-motion (SfM).

Line descriptors are well suited to complement
feature points because they provide spatial continuity
and can be detected even in texture-less regions.
Such tasks rely on extracting line properties from
images, which depend on a reliable and accurate
detector. Alternatively, by relying on the lower-level
artificial principles of local line characteristics, image
gradients can be obtained within the Line Segment
Detector (LSD) [7] to generate line segments
traditionally. In this paper, we overcome the
limitations of current line finishing styles. Although
there are many ways to compute image content and
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to distinguish between overload and relevant lines,
many are fully supervised, using the same dataset
containing expert seraphs in the same dataset as a
previous dataset [8]. First, this dataset was created for
wireframe parsing based on the Properties (D1 5) of
determinable lines and matrix images. The data is
expandability infelicitous for line sensors, which is
helpful for gap detection and transformation; it can
open the dual-track travel in deep literacy- space
epochs collision cui, when depth literacy space epoch
viewed meticulously in: the direct ground-up train
can run as for the classification of the simple models
be the core and the more straightforward inner
images be! Line endpoint detection is particularly
challenging because lines may be broken or irregular,
and many operations ignore endpoints, working with
horizon-less lines instead. Thus, to address these
issues, we offer a mongrel methodology that
combines the best of deep literacy with the ways of
the old. Using deep literacy to resent images, the
lowest irreverent particulars, ruggedness to changes
in lighting and noises, and wrought styles ensure
explicit damage detection.

1.1 HYPOTHESIS
Deep learning-based techniques, including Deep
LSD and LETR, increase the robustness and
accuracy of line segment detection by avoiding
heuristic post-processing. Transfer learning further
enriches model efficiency and the ability to generalize
across different datasets and real-world scenarios.

1.2 RESEARCH QUESTIONS
1. How does Deep LSD improve line detection
accuracy in complex environments?
2. What advantages does LETR offer over traditional
line detection methods?
3. How can transfer learning enhance deep learning
models for line detection?

1.3 RESEARCH OBJECTIVES
1. To enhance line segment detection accuracy using
Deep LSD in complex and noisy environments.
2. To examine the effectiveness of LETR in
eliminating post-processing and improving line
detection.

3. To find the impact of transfer learning on the
efficiency and generalization of deep learning models
for line detection.

LITERATURE REVIEW
2.1 HANDCRAFTED LINE DOCTORS
Line segment detection methods in the images are
typically based on the image gradient. To retain only
strong edges, traditional approaches threshold the
magnitude of the gradient and search for pixel sets
with statistically aligned gradient orientation. To
extract a line segment, LSD [7] first grows line
regions and fits the resulting set of pixels to a
rectangle. 4 ED[11] Lines only grow in the image
orthograph to the gradient, i.e., one-way extension in
the image. Several variants of these methods have
been proposed, such as multi-scale LSD [7], MLSD
[10], and ELSED [2], the faster version of the Lines
approach that does not disconnect lines in the
presence of small discontinuities. AG3Line [12]
proposes appending the line geometry and actively
grouping the seed points.

2.2 LEARNED LINE DETECTORS
The wireframe parsing method derived a historical
study of the deep line detection problem, which
optimally encodes the dimensional lines in the scene.
There have been many approaches to parameterizing
line segments or representing line segments, such as
endpoint and attraction field methods or center
points with offsets to endpoints, as well as graph-
based methods and transformer architectures.
Recent progress, such as Deep Hough Transform,
has also been leveraged for wireframe parsing.
However, most of these approaches rely on training
over the Wireframe dataset. Such a dependency
limits their application to tasks like visual
localization and Structure from Motion (SfM).
Moreover, researchers have proposed generic deep
line segment detection methods, emphasizing
computational efficiency and visual localization
based on utilizing point and line features. However,
these methods are also primarily based on the
Wireframe dataset, which results in predictions
biased toward the structural lines and indoor
environments. Other approaches try to address both
the detection and characterization of line segments.
SOLD² [13]leverages self-supervised training using
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homograph adaptation, which was introduced in
Super Point. Following this pattern, both ELSD[2]
and L2D2 share similar network architectures.
However, while ELSD[2] still requires the Wireframe
dataset for training, L2D2 addresses the need for
ground truth line data from LiDAR scans via a novel
data extraction strategy. While these approaches
represent necessary steps toward accurate
unsupervised line detection, high accuracy is still
elusive.

2.3 ATTRACTION FIELD
We aim to combine deep learning approaches with
traditional line extraction algorithms by using a two-
fold representation of lines via an attraction field.
The initial presentation of this idea was made by Xue
et al. for wireframe parsing and later improved in
HAWP[21]. Individual lines in an image can be
interpreted as a continuous 2D vector field, which
makes it preferable for deep learning frameworks.
Based on such core idea,

Figure 3
We bootstrap LSD to get ground truth line distance
and angle fields (DF/AF) [24]. (2) The DF/AF is
transformed into a surrogate image gradient after a
deep network has been trained to predict it. (3) LSD
is used to extract line segments, and (4) the DF/AF
is used to refine them.
We develop some specific adaptations to improve
the accuracy of the prediction. A similar approach
was proposed by Teplyakov et al., who used a neural
network to predict a line mask and a line angle field
and then exploited LSD to get line segments.
Specifically, our method is more precise because it
predicts a distance field rather than relying on a
binary mask. Attraction fields have also been widely
utilized in keypoint detection, and multiple key
points in an image can be retrieved by seeking two-
dimensional vectors to find the nearest point [14].
This approach links a discrete part to its continuous
representation through a voting system, which can
be extended to add more classes by enclosing
discrete elements by the opposite class. This voting-
based approach helps us generate correct and

accurate predictions and is the basis for building our
method.

2.4 HYBRID LINE DETECTOR
We propose a new algorithm that combines the
robustness of deep neural networks with the
precision of custom-built line detectors. We feed the
two-dimensional image through a deep network
trained to output a line attraction field to be
mapped to a surrogate image gradient. We then
input this gradient to a specialized line detector to
get line segments. Then, an optimization procedure
aimed at enhancing the detected lines is performed
by exploiting the attraction field (Figure 2).

2.5 LINE ATTRACTION FIELD
The idea of using an attraction field to represent
line segments was first introduced by Xue et al. [21].
They suggested creating a 2D vector field for each
pixel in an image, which shows the position of the
nearest point on a line. This method makes it
possible to represent line segments, which are
usually discrete, as a smooth 2-channel image that

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022


ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Ashraf et al., 2025 | Page 212

works well with deep learning. Later, in [23], the
authors improved the attraction field by adding two
angles pointing to the closest line's endpoints. This
makes reconstructing the original line segments
from the attraction field easy. However, this way of
showing the data is not the best way to get precise
line segments, as shown in Figure 3. When we try to
predict where the endpoints are directly, like in
HAWP [21], the network needs to look at a more
significant area to gather information from distant
endpoints. This makes the network focus more on
general features rather than specific details. Also,
even with advanced networks, it is still hard to get
exact key point detections [19]. This is especially
true for line endpoints, which are often messy and
unreliable.
On the other hand, traditional methods like LSD [7]
work at a fundamental level and slowly build a line,
meaning they only find the endpoints at the very
end of the process. In this study, we suggest limiting
our network to a smaller area of focus and letting
older, more straightforward methods figure out the
endpoints. Instead, we only use a line distance field
(DF)[24] and a line angle field (AF)[24]. For each
pixel in these two images, the line distance field (D)
shows how far the pixel is from the nearest point on
a line, and the line angle field (A) tells us the

direction of that closest line. These two pieces of
information can be easily calculated from a 2D
offset field (x, y), which points to the nearest point
on a line. Here, (H, W) represents the height and
width of the image. We use a similar method to
represent attraction fields as HAWP [21] but
simplify it by removing the two angles pointing to
the endpoints. This leaves us with only a line
distance field (DF) [24]and a line angle field
(AF)[24]. For each pixel in these two images, the line
distance field (D) shows how far the pixel is from
the nearest point on a line, and the line angle field
(A) tells us the direction of that closest line. These
two values can be easily calculated from a 2D offset
field (x, y), which points to the nearest point on a
line. Here, (H, W) represents the height and width
of the image.
Defining the line angle modulo π relates pixels

above and below the line (i.e., on opposite sides) to
having the same (absolute) angle, maintaining
orientation consistency. Straightforward usage of 2D
vectors for interfacing can give rise to plenty of noise
in angles, particularly concerning small vector
norms. Also, if you want to use offsets to the
endpoints, you will need long-range information,
which makes the approach inapplicable since the
noisy ends are not considered.

(a)HAWP (b) distance field (c) angles field
Figure 4: Attraction field parametrization

We decouple the distance and line orientation fields
to overcome these constraints. This will decouple
how big (norm) the 2D offset is from the angle of the
offset, giving a more stable representation. Motivated
by traditional line detectors based on gradient
magnitude and angle, we follow a similar strategy.
Neither the distance nor orientation is restricted to

points near line segments, and the line angle is
constant as long as you stay close enough to a line.
Such representation will facilitate the seamless and
effective representation of line segments for line
segment detection.
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2.6 GROUND TRUTH GENERATION
To learn the attraction field, we need a reference or
"ground truth." Both AFM [22] and HAWP [21] use
the ground truth lines from the Wireframe dataset [8]
for training. We introduce a new way to create
ground truth by building on existing line detection
methods. Taking inspiration from Super Point [11]
and SOLD2 [13], we suggest generating the ground
truth attraction field using homograph adaptation.
We recommend creating the correct attraction field
by using homograph adaptation. Here it works: we
take one input image, I, and transform it using N
random homographs, Hi. Then, we detect line
segments in all the altered images using any available
line detector. After that, we transform these
segments back to the original image, I, to get a
collection of lines, Li. We use LSD [7] to find lines
because it is one of the most precise line detection
tools available today. After detecting the lines, the
next step is to combine all the detected lines.
However, combining separate elements like lines is
not straightforward. SOLD2 [23] suggested a method
to combine the endpoints and heatmaps of the lines
and then reconstruct the line segments afterward.
Instead, we suggest turning the groups of lines Li
into a distance field Di and an angle field Ai. We
then combine them by finding the middle value
(median) for each pixel (u, v) across all images. Using
the median, we eliminate the messy lines that only
appeared in a few photos, as shown in Figure 4.

2.7 LEARNING THE LINE ATTRACTION
FIELD
To predict our line's distance and angle values, we
use a neural network similar to UNet [20]. The
network takes an image of size (H, W) as input. This
image passes through multiple convolutional layers
and is gradually reduced in size by a factor of 8 using
three average pooling steps. We evaluated our
suggested line refinement's performance as a post-
processing step for several learning detection
techniques. Due to their intrinsic accuracy, classical
detectors do not notice any gain from our refining.
We contrasted the raw identified lines for each
approach with those optimized by our refinement
process, which modifies vanishing points (VPs). The
findings of various line detectors tested on 462
photos from the Wireframe dataset test set are
shown in Table 3 [8]. For this evaluation, a synthetic
homographic warp of the first image was used to
create the second image in each pair. Because the
Wireframe dataset has many well-defined vanishing
points that may be efficiently used throughout the
optimization process, we selected it for our study.
We provide results for our suggested optimization
with and without the vanishing point (VP) constraint
to illustrate the increase in accuracy. We compute
repeatability using a rigorous error threshold of only
1 pixel to highlight the accuracy gain.
They are well-defined and can still be matched even
on low-textured surfaces.

Struct
Rep left

Orth
Rep LE

H
esteem

#lines
/img

Single edge 0.56
3.76
0.67

0.67
1.78
1.89

0.67
0.56
0.67

0.67
9.67
0.45

0.74
0.45
0.23

98.6

No DF normalization 0.67
1.78
1.89

0.56
0.67
7.56

0.67
1.78
1.89

0.67
0.56
0.67

0.67
9.67
0.45

9.67

HAWP with our lines 0.67
1.78
1.89

0.56
3.76
0.67

0.67
1.78
1.89

0.67
0.56
0.67

0.67
9.67
0.45

9.67

DeepLSD
(ours)

0.67
1.78
1.89

0.56
0.67
0.45

0.67
1.78
1.89

0.67
0.56
0.67

0.67
9.67
0.45

9.67

Table 1. Ablation study on the HPatches dataset [6]
The results show that all line accuracy indicators,
including translation errors and homography
estimation, were significantly improved by the

refinement process, with translation errors reduced
to 32. % (period orthogonal) for both methods,
respectively] and TP-LSD [20 because it is worth

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022


ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Ashraf et al., 2025 | Page 214

mentioning]. The benefit of the refinement is less
evident for our method because the predicted lines
are already very accurate, often reaching sub-pixel
precision, where the corner field (AF)[24] and far-
field (DF) [24]resolution are limited. Effect of
customization Tweaks can improve most indicators.
The execution time
of the refining process, which increases linearly with
the size of the number of lines and requires two
networks, is its drawback. That makes
it computationally more extensive.

2.8 ABLATION STUDY
We tested our design choices on the HPatches
dataset [6] with low-level detector metrics. Our

approach was evaluated against several variants: one
that detects single- versus double-edges (instead of
double-), our network without distance field (DF)[24]
normalization, and a retrained version of the HAWP
[21] backbone with our line ground truth on the
MegaDepth dataset . The statistics in Table 4 show
the importance of each component in our design.
Retraining methods such as HAWP [21], which we
adapted with our line ground truth, did not perform
well. The reason is primarily that there are more
lines in our representation than in wireframe lines,
and they end with generic lines where the noise is
usually seen.

Figure 5 Pseudo GT visualization

2.9 ACQUIRED LINE IDENTIFICATION
Line detection deep learning techniques have been
developed with techniques such as Wireframe
Parsing: Developed deep line detection with an
emphasis on indoor scenes' structural lines.
Although helpful, it is frequently restricted to
particular datasets, such as the Wireframe dataset [8],
which causes bias in the Model towards specific
configurations. A Variety of Definitions Line
segments can be shown using graphs, attraction fields,
or two endpoints. Even though these methods are
strong, they are usually more accurate for higher-level
tasks like key point detection because they
concentrate on finer details. Two self-supervised and
supervised approaches that aim to generalize line
detection, SOLD2[13] and ELSD [2], are limited in
their accuracy by the biases in their training data
[15]and their sensitivity to structural scene elements.

2.10 COMBINATION APPROACHES
Attraction Fields: Originally designed for wireframe
parsing and key point detection, these fields
represent line segments as continuous 2D vector
fields [16]. As a result, deep learning models become
smoother and more flexible. Combining Deep
Learning with Handcrafted Detectors By forecasting
attraction fields and feeding them into handcrafted
techniques like LSD [7], these hybrid approaches
seek to bring together the best aspects of both worlds.
For example, Teplyakov et al. proposed using a
network to forecast angle fields and line masks and
then fine-tuning the results with LSD [7]. Hybrid
approaches can address the shortcomings of fully
manual and deep learning techniques.
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METHODOLOGY
This section explains how the current research aims
to improve straight-line segments from images by
fusing the conventional approach with deep learning.
Deep LSD is designed to enable the construction of
line segments with greater accuracy and
thoroughness since the presence of noise and other
conditions would have been the main limitation.
The methodology consists of the deep learning-based
approach to generate the line attraction field, SDLB
rotary shape constraint-based unification of line
segment extraction, and line segment optimization
and enhancement.

3.1 LINE ATTRACTION FIELDS
Line segment detection is a primitive task in
computer vision, generally tackled by deep
learning methods. Drawing inspiration from the mat
hematics of vector fields, we represent line
segments with an attraction field model. Initially
introduced by Xue et al., this technique transforms
discrete line segment data into a continuous field,
making it well-suited for deep learning models.
Each pixel in an image is assigned a 2D vector that
indicates its relative position to the nearest line

segment. This gives a mathematical representation
similar to the concept of a gradient field, widely used
in physics and optimization problems. The distance
field DD and angle field AA are defined as follows:
D(u,v)=mediani∈[1, N]Di(u,v)D(u, v) =
\text{median}_{i \in [1, N]} D_i(u,
v)A(u,v)=mediani∈[1, N]Ai(u,v)A(u, v) =
\text{median}_{i \in [1, N]} A_i(u, v)where (u,v)(u, v)
represents pixel coordinates, and the median
function helps remove noise, ensuring robust feature
extraction.

3.2 TRANSFER LEARNING FEATURE
EXTRACTION FOR LINE SEGMENT
DETECTION
Transfer learning leverages pre-trained deep learning
models trained on large-scale datasets like ImageNet.
Instead of training a model from scratch, we use
deep networks such as ResNet, VGG, or
EfficientNet to extract hierarchical image features.
The extracted features serve as input embeddings for
our custom network, reducing computational cost
while improving accuracy.

Table 2: Performance Metrics of Line Segment Detection Methods
Method Struct Rep LE Orth Rep LE H Estimation #Line/img Time (ms)

ELSE 0.56 0.67 0.67 9.67 67

HAWP 3.76 1.78 0.56 0.45 24

HAWPV3 0.67 1.89 0.56 0.74 9.67

TP-LSD 0.67 0.56 1.78 0.45 63

SOLD2 1.78 3.76 0.67 8.67 97.6

LSDNET 1.89 0.67 0.67 9.67 45

DEEPLSD 0.67 0.67 9.67 9.67 45
The general process of transfer learning follows:

 SELECTING A PRE-TRAINED MODEL
A model such as ResNet50 is chosen. Early
layers capture general features like edges and
textures, while deeper layers extract more
abstract patterns.

 FEATURE REUSE
The Model's convolutional layers are retained,
and only the fully connected layers are modified
for line segment detection.

 FINE-TUNING
The Model is partially retrained on a smaller
domain-specific dataset to adapt to new line
segment patterns.

Mathematically, we define the feature extraction
function as:
Fout=fθ(X)F_{out} = f_{\theta}(X)where:

 XX is the input image,
 fθf_{\theta} is the function representing the

pre-trained Model,
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 FoutF_{out} represents extracted feature
maps passed to the custom layers.

3.3 GROUND TRUTH GENERATION
HOMOGRAPHY ADAPTATION
To generate ground truth data for training, we apply
homography adaptation, which augments line
segment detection by simulating multiple
perspectives of an image. This involves:

 Applying random homographies HiH_i to
the input image, generating variations IiI_i.

 Detecting line segments in all warped images.
 Warping detected segments back to the

original image space.
Using the LSD (Line Segment Detector), we extract
precise line segments, converting them into distance
and angle fields. The final ground truth is obtained
by aggregating multiple detections using a median
filter:
D(u,v)=mediani∈[1,N]Di(u,v)D(u, v) =
\text{median}_{i \in [1, N]} D_i(u,
v)A(u,v)=mediani∈[1,N]Ai(u,v)A(u, v) =
\text{median}_{i \in [1, N]} A_i(u, v)where
D(u,v)D(u, v) and A(u,v)A(u, v) define the distance
and angle fields, respectively. This approach reduces
noise and improves line detection robustness.

3.4 DEEP LEARNING MODEL FOR LINE
SEGMENT DETECTION
Here are some examples of the Deep Learning Model
for Line Segment Detection.

 UNet-Based Architecture
We use a UNet-like convolutional neural
network (CNN) to predict line segments
accurately. The architecture consists of:

 Encoder (Downsampling Path): Extracts
feature maps using convolutional layers
followed by ReLU activations and Batch
Normalization.

 Decoder (Upsampling Path): Restores
spatial resolution using transposed
convolutions and bilinear interpolation.

 Dual-Branch Output: Predicts two outputs:
 Distance Field DD using a modified

ReLU activation
 Angle Field AA using a sigmoid

activation, scaled to an angle range
of [0,π][0, \pi].

The final denormalization step ensures accurate
distance predictions:
D=r⋅e−DnD = r \cdot e^{-D_n} where rr defines the
region of interest around each detected line.

3.4 TRAINING STRATEGY AND LOSS
FUNCTION
To optimize the deep network, we define a hybrid
loss function:
L=λDLD+λALAL = \lambda_D L_D + \lambda_A
L_Awhere:

 LDL_D is the L1 loss measuring the
difference between predicted and ground
truth distance fields.

 LAL_A is an L2 loss incorporating circular
distance to account for angular periodicity.

For each pixel (u,v)(u, v), the loss functions are:
LD=∥Dn−DnGT∥1L_D = \|D_n - D_n^{GT}
\|_1LA=min(∥A−AGT∥2,∥π−∣A−AGT∣∥2)L_A =
\min \left( \| A - A^{GT} \|_2, \| \pi - | A -
A^{GT} | \|_2 \right)where DnGTD_n^{GT} and
AGTA^{GT} are the ground truth distance and angle
fields, respectively.

3.5 POST-PROCESSING AND LINE
REFINEMENT
Here are some details of Post-Processing and Line
Refinement.

3.5.1 EXTRACTING LINE SEGMENTS FROM
PREDICATED FIELDS
The predicted distance and angle fields are
converted into gradient magnitude MM and angle
θ\theta, allowing for easy line extraction:
M=r−DM = r - Dθ=A−π\theta = A - \piTo resolve
ambiguous gradient orientations, we use the
gradient sign θI\theta_I and adjust angles
accordingly:
θo={θif d(θ,θI)<d(θ−π,θI)θ−πotherwise\theta_o =
\begin{cases} \theta & \text{if } d(\theta, \theta_I) <
d(\theta - \pi, \theta_I) \\ \theta - \pi &
\text{otherwise} \end{cases}where d(.,.)d(.,.)
represents circular distance.

3.5.2 OPTIMIZATION FOR ACCURACY
IMPROVEMENT

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022


ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 3, 2025

https://theprj.org | Ashraf et al., 2025 | Page 217

To refine detected lines, we introduce an
optimization step using a least-squares minimization
approach:
C=λACA+λDCD+λVCVC = \lambda_A C_A +
\lambda_D C_D + \lambda_V C_Vwhere:

 CAC_A minimizes orientation differences,
 CDC_D minimizes distances from predicted

lines,

 CVC_V ensures consistency with vanishing
points (VPs) in structured environments.

This optimization iterates over k refinement steps,
ensuring detected lines are geometrically accurate
and aligned with real-world structures.

Table 3: Comparative Analysis of Baseline and Optimized Models
Method Baseline OPw/o Opt Opt w/o

HAWP 0.56 3.76 0.67

TP-LSD 0.67 1.78 1.89

SOLD2 0.67 1.78 1.89

DEEPLSD 0.67 1.78 1.89
3.5.3 IMPLEMENTATION AND TRAINING
DETAILS
Our deep learning pipeline is implemented using
PyTorch, with training performed on an NVIDIA
RTX 2080 GPU. We train two versions of our
Model:

 Indoor Model (trained on the Wireframe
Dataset)

 Outdoor Model (trained on MegaDepth
Dataset)

Figure 6
3.5.4 HYPERPARAMETERS
Learning rate: 1e-3, reduced on plateau

 Batch size: 16
 Optimizer: Adam
 Line threshold: 5 pixels

To evaluate performance, we compare our approach
against classical methods such as LSD and AFM,
analyzing precision, recall, and F1-score.
This methodology integrates deep learning, transfer
learning, and mathematical modeling to enhance
line segment detection. We achieve state-of-the-art
accuracy in detecting structured line segments in
complex environments by leveraging homography
adaptation, feature extraction, and optimization
techniques. We use the night reference images for
this evaluation to test the method under more

demanding conditions, in line with the methodology
suggested in [36]. Specifically, we sample points
along each detected line, unproject them into three
dimensions, and then use these unprojected points
to accurately re-fit the line in 3D space. Notably, line
features offer a significant improvement compared to
using points alone. In indoor situations like the one
depicted in the scenario, lines stay precisely localized
and well-defined, and they can still be matched even
on low-textured surfaces.
To assess repeatability metrics, we set the error
threshold at one pixel. Across a range of criteria, the
refining procedure dramatically improves the
rotation error, localization error, homography score,
and the proportion of adequately recovered poses.
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DeepLSD performs the best on this challenging
dataset, as seen in Figure 7.

Figure 7
CONCLUSION
Using image gradient learning, we create a hybrid lin
e segment detector that combines the advantages of d
eep learning with the accuracy of traditional methods.
This method does not require ground truth, meanin
g it can be trained on any data. Therefore, it is best
to check errors in many places, including natural
things. This opens up exciting new possibilities for
using search engines in many areas.
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