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Abstract
This article focuses on the geometric properties of normalized Miller-Ross function.
Analyticity, starlikeness, convexity, =~ We use constructive tactics to establish the conditions for close-to-convexity and
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INTRODUCTION
Let A represent the widely recognized and extensively
studied class of analytic functions g, which can be

written as
[ee)

()= + ,
=2
In A, a onetoone function. A function is called
starlike if it maps  into a domain that is starlike in
relation to the origin, and convex if it maps onto a
convex domain. Convex univalent functions in
and allstarlike functions in are represented by
, respectively.
The generalizations of , denoted

by ()( ) ()( ) of order

[0,1], respectively, are as follows:
O={m(5)>
():{: (1+ |(|())|)> , }

and
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find conditions under which the normalized Miller-Ross function is starlike. We
also apply the starlike function

=72 o establish the conditions for close-to-

These definitions serve as the foundation for
investigating the Miller-Ross function's geometric
features as well as its interactions with other
mathematical functions and operators.

The definition of the m ( ) (close-to-convex) class of
order is:

()={ :Re< (())>> , , (O)}

Assume that g is in A. The class  of normally real
functions is thus described as follows:
={: () C(N=0 2
If () forms a convex set in the imaginary axis
direction, then a normalized univalent function f is
part of , the class of convex functions in that
direction. Stated differently,
[ 1s 2] ( )l 1 2 ( )l ( l)
= (2

If satisfies ( '( ))>0for ,
then (starlike), as shown in [4]. The extended
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definition with regard to order & was introduced by
Mondal and Swaminathan in [5].
The Miller-Ross function is demarcated by

_ T+
0=+ S

[" is a symbol for the Gamma function. In C, the

infinite series converges completely when >—1,

but not when =—1, it converges inside the open
unit disk . It is worth noting that (,)is a

complete function. The Miller-Ross function is an
extension and adaption of fractional calculus
principles, which are commonly used to solve
fractional differential equations and simulate
memory-dependent processes.

K.S. Miller and B. Ross proposed the function,
which was intensively investigated for its applications
in fractional integrals and derivatives [2]. They
investigated its characteristics using fractional
calculus and integral equations. The function
provides a broad foundation for comprehending
fractional operators and their applications in
numerous scientific fields.

In particular, the Miller-Ross function bridges
fractional calculus with operational methods, being
crucial to the theory of partial differential equations
with fractions. It offers tools for solving fractional
integral equations and developing generalized
transforms, with connections to the Henkel
transform and Mikusinski's [1] operational calculus.
The function also finds applications in models
involving anomalous diffusion, viscoelastic systems,
and other complex systems described by fractional
dynamics. Its entire function nature and connection
with generalized Mittag-Leffler [3] functions make it
a key tool in extending classical methods of solving
differential equations to their fractional counterparts.
It is also possible to investigate the generalizations of
many functions, including the Whittaker and Array
functions, as well as whole auxiliary functions, in
relation to Miller-Ross functions. Specifically, the
following is the relationship between the Bessel

function and the function +1(T)’

0=(9) +(-3)

(_1) 2 +
=022+ L (+ +1)

This connection emphasizes the Miller-Ross
function's importance in generalizing special
functions as well as fractional calculus applications.
See in-depth talks in fractional calculus and its
applications for further information on the Miller-
Ross function.

The Hadamard product, often known as the
convolution, is displayed and described as:

o0

C )= + ,
=2
Ruscheweyh [6] created the class , which includes

prestarlike functions of rank z, and used the concept
of convolution as follows:

Let . Then, if and only if:
Re <Q> >0, =1,
a0 O 0=
<1l
In particular, when we set Z% , then
1
= d =)= . The «dl
0 an (2) 1 e class was
generalized to [, ]by Sheil-Small et al. [27]. A
function [, ] (),
where

“a—)zz 0= <1 Itisinformal to

seethat [, ]=
Since the function | is not a member of class A,
we take into consideration the modified function
that follows:

O= 0O
“r( +1) !

L T+
>—1 >0

We also review the minimal principle of harmonic

functions and the Schwarz reflection principle:

= +
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The Meaning of the Reflection Principle:

The theory states describe that an analytic function
demarcated on the upper half plane and having
precise real values on the real axis may be prolonged
to the intricate plane. If an analytic function is
defined on  and is an arbitrary area, having precise
real values on the bottom half plane singular values
on its real axis, it can be extended to the
Stereographic Projection of U perpendicular to P.
This notation was given by my colleague Tanaka.
Tanaka also stated that the function can be provided
in the following notation.

O="0

This formula delivers analytic continuation to the
whole complex plane [5].

The Minimum Principle of Biharmonic Functions:
A bi-harmonic function U cannot have tiniest or
extreme at an interior point without it is continual
[11]. Over the past few years, the starlikeness and
convexity of functions have been studied, and a

lot of interest has been given to some special
gaussian or hyperbolic functions. For additional
details, see [10, 17]. Parajapat [11] is the first who
studied the convexity and the starlikeness of Raza et
al. [18] examined the starlikeness and convexity of
the function of the first order  with multiplier.

They also studied Hardy spaces and the vicinity of
the function in the vicinity of the convexity. Baricz et
al. [19] studied the radii of gstar and starlike
functions for several normalized versions of the
Miller-Ross functions. The aforementioned theorems
will be proved in this paper. The close-to-starlikeness
was studied by Maharana et al. [20] for the close-to-
convexity was investigated by Mahrana et al. [20], in
starlike and suction functions relation.

The geometric characteristics of hyper geometric
functions have been investigated more recently by
Sangal and Swaminathan [21] wusing positivity
approaches.

The geometric features of are the main emphasis

of this study which follows the finding of [21]. By
studying starlikeness,  close-to-convexity,

imaginary height, central steaming prestarlikeness,
we wrap up our investigation. The primary
instruments of our investigation are positive
approaches.

We use following lemmas.
Lemma 1 [10]. Consider the sequence { }°2; of a
optimistic factual number that
1. Let =28, and ( —1) —(1+
) +1=0 =2 Then, ()= +

—> with reverence to starlike

function 7—.
Lemma 2 [13] If the function ()=

00:1 1 where 7 =1and
=0, = 2 is analytic in , and if

[ee] . . o e .
{ 2, is a convex diminishing

sequence, . ., 4+2—2 41+ =0
and - =0 =1, then
()>3 U

1. Main Results:
Theorem 2.1:
Let =1, =1, and the Miller-Ross
function () be defined as:

“r¢ +1) 2
()= i ( T i )
Then, () B (close-to-convex
with respeyct to the starlike function
Wif:

1. ( +)=8 ()
2. 22 + )=3( +).

Proof: Consider

()= +
=2
Where,
_r(+y _
== =1 .=
1, =1 (1

=2, we have to show that gratifies the

premise of lemma 1. It is clear that =land =
1 the dissimilarity ( + ) =8 () is gratified.
Put p = 1 in equation (1)
¢ +1)
YTUOTC 4D
1=1
Now, put p = 2 in equation (1)
_rC+1 =t
re +2)
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1 =8 , implies
r 1
128&
r¢e +2)
r( +2)= sr( +1)

Again for = 2, consider
(-1 -(+1) 4+ >0
T+ r( +1) -+
D I GF =Y
>0

( _1)r( +1) 7t ( +1r( +1)
¢ +) r¢ + +1)
(-1 ( +1

T +) T+ +1)
(—Dr( + +1)—( +Ler( + ) <0
o+ + D)
( —r( + +1)—( +Lcr( + )>0
Again put =2
Q@-Dr( +2+1)—@+1cr( +2)>0
r( +3)—=3cr( +2)>0
i +3)
r( +2)
r( +3)
r( +2)
One can easily observe that the above
countenance is non-negative for =1, =1

if 2 (2 + )=3 ( + ). Itis clear that
{ }m:l satisfies Lemma 1. This completes the

3c

—3c>0

result.
Theorem 2.2:
Let =1 =1, —
’ () be defined as:
_ w I(+1) 1
O=+ L
Then
(+)> ()
e+ )+ ()} (+)
>4 () 2 +),
we have

( ?f;>

1

> — ={

2 1

<1}

Proof: To obtain our result, we first prove that the
sequence

[y = {—r( 1) _1}00

rc+) ),

is decreasing.

Since

r(( +1) +1) >

r(( +1)) ( =

1, =1 =1).
Therefore
r( +1) +1) - r( +1))
rC) rC)
rC) rC)
r( +1)) r( +1) +1)

[ee]
Now, we prove that the sequence { } _, convex

and decreasing. For this we prove that

ren ey

_2<r( +1) —1+1> o

e T
e
-7

)Zo
re + +1)

()

_ZQILiEL_)Zo
re + +1)

( r( +1) )(ﬁ+

2
r(++z)"r(++1))2°

(FC +

r( + +2)r( + +1)+ 2r( + )r( + +1)—2 @1+ )Hr( + +2)

1) )(

0

cr(+)r(+ +2)r( + +1)

)=
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r( + +2)F( + +1)

+2r( + )r( + +1)

—21( + )r( + +2)=0
r(c + +2)r( + +1)=2cr( + )r( +
+2)=a( + )r( + +1) (D
Put =1in(1)

r( +3)r( +2)

=2cr( +1)r( +3)

= 2r( +1)r( +2)

r( +3)r( +2)

=cr( +1)[2r( +3)

— 1( +2)]

1 ><2r( +3)— T( +2)>
rC +1) \ r( +3)r( +2)
1 2( 2r( +3)
r¢ +1) r¢ +3)r( +2)
re +2)
T +3)( +2)>

r( +2)r( +3)

Proof:

To prove that S, we show that { } and

{ —-( +D .,.1} both are non-increasing. Since
=0 for ( ) under the given conditions. So,

consider

{ _( +1) +l}>0

Cre) - )

rC+ )>O rC+ +1)

m __(+D
(¢ +) rCc+ +1)
m  (+D -0
o(+ ) T+ +1)
kr( + +1)— ( +1)r( + )>0
cor( + )r( + +1)
Put the value =1
r( +2)— @+ur( +1)>0
r( +2)>2r( +1).

=2r( +3)— r( +2 Now
cr( +1) (+3)=T1C*> (+2) +2=2( +1) u+ >0
r( +2)r( +3) r( +1) 12
or( + 1) r( +2)=2r( +3) ( +2)( T +2)>
ich shows tha * is a convex decreasin —1+1
Which shows that { } _ md g a0 +1)<F( +1) )
sequence. Now, from lemma 2 { }_1 satisfy r( + +1)
e AN p rc +1 ™
( -1 )>—, for all . Therefore, + <—> >0
N 1 2 r¢ +)
{+}>5’ <r( +1) )
( +)|l—0———=
Hence the result follows. r( + +2)
Theorem 3: r( _,_1)
Let =1 =1, Miller — —-2( +1)<—)
Ross function () be defined as: F( 15( * +1)
_, Ty N <+—>>o
()= + TR cr( + )
= c( +2) 2( +1)
If: r( +1) < -
1L (+)>2 () r¢ + +2) r( + +1)
2. 2@ +)+3 ()} (+)> r—K >>0
8 () 2 +), cr( + )
then () Pue -1
©0) 3 22 1
( '()>>0 " +1) (r( +3) TI( +2)+cr( +1)>
{I I<1} >0
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» +1)< 3 2 1 >

r( +3) r( +2) cor( +1)
>0

32r( +2)r( +1)—4r( +3)cr( +1)+r( +:

r( +3)r( +2)cr( +1)
>0
3r( +2)r( +1)—4r( +3)r( +1)
+T( +3)r( +2)>0

ar( +3)r( +1)
r( +2)

ar( +3)r( +1)>o
r( +2)

32r( +1)r( +3) >

32r( +1)r( +3)-
Then ()

(I—’()>>0
CO)
{I <1}

Hence the result is proved.
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